1)什么是用户兴趣? 指用户在使用某APP时,所表现的行为倾向性,APP会根据用户的一系列行为表现来确实用户的兴趣。 2)兴趣模型的分类 按时间:长期兴趣,短期兴趣;长期兴趣指不容易随着时间而变化的兴趣,相对稳定;短期兴趣指变化比较频繁的兴趣。 按表现:显式的兴趣;隐式的兴趣 ...
http: in.sdo.com p 引言 在互联网上,信息的数量越来越大。用户可以选择的面也越来越广,推荐系统的任务是,要从众多的资讯中,过滤并挑选出符合每个用户口味的内容,推荐给不同用户。在这个过程中,对用户兴趣的刻画 建模是最为重要的一环。 传统的用户兴趣刻画,大多集中于用户基本属性上,例如性别 年龄 职业 收入等,这样提取的用户属性,对用户兴趣的刻画并不够直接,对推荐系统来说,更需要一类直 ...
2014-11-22 14:32 0 2325 推荐指数:
1)什么是用户兴趣? 指用户在使用某APP时,所表现的行为倾向性,APP会根据用户的一系列行为表现来确实用户的兴趣。 2)兴趣模型的分类 按时间:长期兴趣,短期兴趣;长期兴趣指不容易随着时间而变化的兴趣,相对稳定;短期兴趣指变化比较频繁的兴趣。 按表现:显式的兴趣;隐式的兴趣 ...
“探索推荐引擎内部的秘密”系列将带领读者从浅入深的学习探索推荐引擎的机制,实现方法,其中还涉及一些基本的优化方法,例如聚类和分类的应用。同时在理论讲解的基础上,还会结合 Apache Mahout 介绍如何在大规模数据上实现各种推荐策略,进行策略优化,构建高效的推荐引擎的方法。本文 ...
针对内测用户反馈,由于前一天点击了几个动画,导致第二天推荐的动画屏占比较高,于是开始对此badcase进行分析。 首先分析了该用户的历史观看纪录,由于系统升级,日志缺陷问题,导致该用户10.15-11.3之间的日志没有收集到,但是这就出现了前面的假设不成立现象,由于没有收集到新的数据,对用户画像 ...
。 召回阶段根据用户的兴趣和历史行为,同千万级的视频库中挑选出一个小的候选集(几百到几千个视频)。这 ...
基于内容的推荐引擎是怎么工作的 基于内容的推荐系统,正如你的朋友和同事预期的那样,会考虑商品的实际属性,比如商品描述,商品名,价格等等。如果你以前从没接触过推荐系统,然后现在有人拿枪指着你的头,强迫你在三十秒之内描述出来,你可能会描述这样一个 ...
目前,推荐系统广泛应用于电商、信息流和地图。工业级推荐系统架构一般以召回+推荐作为大框架。其中,以算法区分,如下图所示。 离线/线上指标如下图所示: 个性化召回算法是根据用户的属性行为上下文等信息从物品全集中选取其感兴趣的物品作为候选集,召回决定了最终推荐结果的天花板。 个性化召回分为 ...
推荐系统核心任务是排序,从线上服务角度看,就是将数据从给定集合中数据选择出来,选出后根据一定规则策略方法 进行排序。 线上服务要根据一定规则进行架构设计,架构设计是什么?每一次权衡取舍都是设计,设计需要理解需求、深入理解需 求基础上做权衡取舍。复杂系统架构需要 ...
1 推荐技术 1)协同过滤: (1)基于user的协同过滤:根据历史日志中用户年龄,性别,行为,偏好等特征计算user之间的相似度,根据相似user对item的评分推荐item。缺点:新用户冷启动问题和数据稀疏不能找到置信 ...