数据、特征和数值优化算法是机器学习的核心,而牛顿法及其改良(拟牛顿法)是机器最常用的一类数字优化算法,今天就从牛顿法开始,介绍几个拟牛顿法算法。本博文只介绍算法的思想,具体的数学推导过程不做介绍。 1. 牛顿法 牛顿法的核心思想是”利用函数在当前点的一阶导数,以及二阶导数,寻找搜寻方向“(回想 ...
牛顿法 考虑如下无约束极小化问题: min x f x 其中 x in R N ,并且假设 f x 为凸函数,二阶可微。当前点记为 x k ,最优点记为 x 。 梯度下降法用的是一阶偏导,牛顿法用二阶偏导。以标量为例,在当前点进行泰勒二阶展开: varphi x f x k f x k x x k frac f x k x x k 极小值点满足 varphi x ,求得: x k x k frac ...
2014-11-11 10:20 1 6234 推荐指数:
数据、特征和数值优化算法是机器学习的核心,而牛顿法及其改良(拟牛顿法)是机器最常用的一类数字优化算法,今天就从牛顿法开始,介绍几个拟牛顿法算法。本博文只介绍算法的思想,具体的数学推导过程不做介绍。 1. 牛顿法 牛顿法的核心思想是”利用函数在当前点的一阶导数,以及二阶导数,寻找搜寻方向“(回想 ...
牛顿法 ...
一、BFGS算法 在“优化算法——拟牛顿法之BFGS算法”中,我们得到了BFGS算法的校正公式: 利用Sherman-Morrison公式可对上式进行变换,得到 令,则得到: 二、BGFS算法存在的问题 在BFGS算法中。每次都要 ...
简介:最近在看逻辑回归算法,在算法构建模型的过程中需要对参数进行求解,采用的方法有梯度下降法和无约束项优化算法。之前对无约束项优化算法并不是很了解,于是在学习逻辑回归之前,先对无约束项优化算法中经典的 ...
本文讲解的是无约束优化中几个常见的基于梯度的方法,主要有梯度下降与牛顿方法、BFGS 与 L-BFGS 算法。 梯度下降法是基于目标函数梯度的,算法的收敛速度是线性的,并且当问题是病态时或者问题规模较大时,收敛速度尤其慢(几乎不适用); 牛顿法是基于目标函数的二阶导数(Hesse 矩阵 ...
一、牛顿法 对于优化函数\(f(x)\),在\(x_0\)处泰勒展开, \[f(x)=f(x_0)+f^{'}(x_0)(x-x_0)+o(\Delta x) \] 去其线性部分,忽略高阶无穷小,令\(f(x) = 0\)得: \[x=x_0-\frac{f(x_0)}{f ...
欢迎转载,转载请注明出处,徽沪一郎。 概要 本文就拟牛顿法L-BFGS的由来做一个简要的回顾,然后就其在spark mllib中的实现进行源码走读。 拟牛顿法 数学原理 代码实现 L-BFGS算法中使用到的正则化方法 ...
一.简介 通过前面几节的介绍,大家可以直观的感受到:对于大部分机器学习模型,我们通常会将其转化为一个优化问题,由于模型通常较为复杂,难以直接计算其解析解,我们会采用迭代式的优化手段,用数学语言描述如 ...