软件见:混沌与分形 点集图形: 以此算法生成的图像如下: 我想这几幅图有 ...
IFS是分形的重要分支。它是分形图像处理中最富生命力而且最具有广阔应用前景的领域之一。这一工作最早可以追溯到Hutchinson于 年对自相似集的研究。美国科学家M.F.Barnsley于 年发展了这一分形构型系统,并命名为迭代函数系统 Iterated Function System,IFS ,后来又由Stephen Demko等人将其公式化,并引入到图像合成领域中。IFS将待生成的图像看做是 ...
2014-11-07 06:39 1 3884 推荐指数:
软件见:混沌与分形 点集图形: 以此算法生成的图像如下: 我想这几幅图有 ...
混沌与分形理论的关系密切,混沌中有时包容有分形,而分形中有时又孕育着混沌。分形更注重形态或几何特性,图形的描述。混沌偏重于数理的动力学及动力学与图形结合的多方位的描述和研究。分形则更看中有自相似性的系统。混沌涉及面似乎比分形更广,对所有的有序与无序,有序与有序现象都感兴趣。特别是混沌中 ...
前几天,有个同事看到我生成的一幅逻辑斯蒂分岔图像后,问我:“这是咪咪吗?”我回答:“淫者见淫。”好吧,这里将生成几种分岔映射图形,包括逻辑斯蒂映射系统,正弦映射系统和曼德勃罗映射系统。实际上这几种图形算不上分形,只不过它与我写的其他分形对象使用相同的基类,所以也将其列入混沌分形的范畴 ...
对于函数f(x)=λsin(πx),λ∈(0,1],使用matlab计算随着λ逐渐增大,迭代x=f(x)的值,代码如下: function y=diedai(f,a,x1) N=32; y=zeros(N,1); for i=1:1e4 x2=f(a,x1); x1 ...
IFS为迭代函数系统,是一种构造分形的方法。 方法的核心是以概率p的方式对初始点进行仿射平移变换。 变换公式为: x(k+1)=a*x(k) + b*y(k) + ey(k+1)=c*x(k) + d*y(k) + f 关键是确定IFS码表,只要码表确定了,后面的编程套路基本一样。 下面 ...
电子云是物理学中的一项概念。电子在原子核外很小的空间内作高速运动,其运动规律跟一般物体不同,它没有明确的轨道。根据量子力学中的测不准原理,我们不可能同时准确地测定出电子在某一时刻所处的位置 ...
见:混沌与分形 算法中使用了两个参数,修改参数值可以看到不同的图形 最后 ...
出来的,修改和维护都不容易。而且“人工的函数迭代”让相互之间的依赖性太强。 算是初学python的第一个 ...