写在前面的话: 我现在大四,毕业设计是做一个基于大数据的用户画像研究分析。所以开始学习数据挖掘的相关技术。这是我学习的一个新技术领域,学习难度比我以往学过的所有技术都难。虽然现在在一家公司实习,但是工作还是挺忙的,经常要加班,无论工作多忙,还是决定要写一个专栏,这个专栏就写一些数据挖掘算法 ...
题记: 近来关于数据挖掘学习过程中,学习到朴素贝叶斯运算ROC曲线。也是本节实验课题,roc曲线的计算原理以及如果统计TP FP TN FN TPR FPR ROC面积等等。往往运用ROC面积评估模型准确率,一般认为越接近 . ,模型准确率越低,最好状态接近 ,完全正确的模型面积为 .下面进行展开介绍: ROC曲线的面积计算原理 一 朴素贝叶斯法的工作过程框架图 二 利用weka工具,找到训练的预 ...
2014-10-30 21:41 1 4198 推荐指数:
写在前面的话: 我现在大四,毕业设计是做一个基于大数据的用户画像研究分析。所以开始学习数据挖掘的相关技术。这是我学习的一个新技术领域,学习难度比我以往学过的所有技术都难。虽然现在在一家公司实习,但是工作还是挺忙的,经常要加班,无论工作多忙,还是决定要写一个专栏,这个专栏就写一些数据挖掘算法 ...
贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类 对于分类问题,其实谁都不会陌生,每个人生活中无时不刻的在进行着分类。例如,走在大马路上看到女孩子,你会下意识的将她分为漂亮和不漂亮(漂亮当然就多看几眼啦)。在比如,在路上遇到一只狗,你会根据这只狗的毛发脏不脏 ...
隔了很久没有写数据挖掘系列的文章了,今天介绍一下朴素贝叶斯分类算法,讲一下基本原理,再以文本分类实践。 一个简单的例子 朴素贝叶斯算法是一个典型的统计学习方法,主要理论基础就是一个贝叶斯公式,贝叶斯公式的基本定义如下: 这个公式虽然看上去简单,但它却能总结历史,预知未来。公式 ...
数据挖掘入门系列教程(七)之朴素贝叶斯进行文本分类 贝叶斯分类算法是一类分类算法的总和,均以贝叶斯定理为基础,故称之为贝叶斯分类。而朴素贝叶斯分类算法就是其中最简单的分类算法。 朴素贝叶斯分类算法 朴素贝叶斯分类算法很简单很简单,就一个公式如下所示: \[P(B|A) = \frac ...
1、准备: (1)先验概率:根据以往经验和分析得到的概率,也就是通常的概率,在全概率公式中表现是“由因求果”的果 (2)后验概率:指在得到“结果”的信息后重新修正的概率,通常为条件概率(但条件概率不全是后验概率),在贝叶斯公式中表现为“执果求因”的因 例如:加工一批零件,甲加工60%,乙加工 ...
朴素贝叶斯算法 👉 naive_bayes.MultinomialNB 朴素贝叶斯算法,主要用于分类. 例如:需要对垃圾邮件进行分类 分类思想 , 如何分类 , 分类的评判标准??? 预测文章的类别概率, 预测某个样本属于 N个目标分类的相应概率,找出最大 ...
一、概述 本实验做的是一个很常见的数据挖掘任务:新闻文本分类。 语料库来自于搜狗实验室2008年和2012年的搜狐新闻数据, 下载地址:https://www.sogou.com/labs/resource/cs.php 实验工作主要包括以下几步: 1)语料库的数据预处理; 2)文本建模 ...
原文链接:http://tecdat.cn/?p=15508 绘制ROC曲线通过Logistic回归进行分类 加载样本数据。 通过使用与versicolor和virginica物种相对应的度量来定义二元分类问题。 定义二进制响应变量。 拟合逻辑回归模型。 计算ROC ...