1. 梯度 在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。比如函数f(x,y), 分别对x,y求偏导数,求得的梯度向量就是(∂f/∂x, ∂f/∂y)T,简称grad f(x,y)或者▽f(x,y)。对于在点(x0,y0)的具体梯度向量 ...
这几天在看 统计学习方法 这本书,发现 梯度下降法在 感知机 等机器学习算法中有很重要的应用,所以就特别查了些资料。 一.介绍 梯度下降法 gradient descent 是求解无约束最优化问题的一种常用方法,有实现简单的优点。梯度下降法是迭代算法,每一步需要求解目标函数的梯度向量。 二.应用场景 .给定许多组数据 xi, yi ,xi 向量 为输入,yi为输出。设计一个线性函数y h x 去拟 ...
2014-10-30 20:21 0 11513 推荐指数:
1. 梯度 在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。比如函数f(x,y), 分别对x,y求偏导数,求得的梯度向量就是(∂f/∂x, ∂f/∂y)T,简称grad f(x,y)或者▽f(x,y)。对于在点(x0,y0)的具体梯度向量 ...
(1)梯度下降法 在迭代问题中,每一次更新w的值,更新的增量为ηv,其中η表示的是步长,v表示的是方向 要寻找目标函数曲线的波谷,采用贪心法:想象一个小人站在半山腰,他朝哪个方向跨一步,可以使他距离谷底更近(位置更低),就朝这个方向前进。这个方向可以通过微分得到。选择足够小的一段曲线 ...
在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。这里就对梯度下降法做一个完整的总结。 1. 梯度 在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来 ...
The Learning Rate An important consideration is the learning rate µ, which determi ...
本文以二维线性拟合为例,介绍批量梯度下降法、随机梯度下降法、小批量梯度下降法三种方法,求解拟合的线性模型参数。 需要拟合的数据集是 $(X_1, y_1), (X_2, y_2)..., (X_n, y_n)$,其中$X^i=(x_1^i, x_2^i)$,表示2个特征,$y^i$是对应 ...
梯度下降法存在的问题 梯度下降法的基本思想是函数沿着其梯度方向增加最快,反之,沿着其梯度反方向减小最快。在前面的线性回归和逻辑回归中,都采用了梯度下降法来求解。梯度下降的迭代公式为: \(\begin{aligned} \theta_j=\theta_j-\alpha\frac ...
关于机器学习的方法,大多算法都用到了最优化求最优解问题。梯度下降法(gradient descent)是求解无约束最优化问题的一种最常用的方法。它是一种最简单,历史悠长的算法,但是它应用非常广。下面主要在浅易的理解: 一、梯度下降的初步认识 先理解下什么是梯度,用通俗的话来说就是在原变量 ...