x1和x2的偏导数,即下降的方向 % - 4*x1 - 2*x2 - 1% 1 - 2*x2 - 2 ...
梯度下降法的原理,本文不再描述,请参阅其它资料。 梯度下降法函数function k ender steepest f,x,e ,需要三个参数f x和e,其中f为目标函数,x为初始点,e为终止误差。输出也为两个参数,k表示迭代的次数,ender表示找到的最低点。 steepest.m: 调用示例 : 结果: 调用示例 : 结果: 调用示例 : 结果: ...
2014-10-15 00:06 3 26042 推荐指数:
x1和x2的偏导数,即下降的方向 % - 4*x1 - 2*x2 - 1% 1 - 2*x2 - 2 ...
本文将从一个下山的场景开始,先提出梯度下降算法的基本思想,进而从数学上解释梯度下降算法的原理,最后实现一个简单的梯度下降算法的实例! 梯度下降的场景假设 梯度下降法的基本思想可以类比是一个下山的过程。可以假设一个场景:一个人上山旅游,天黑了,需要下山(到达山谷 ...
在此记录使用matlab作梯度下降法(GD)求函数极值的一个例子: 问题设定: 1. 我们有一个$n$个数据点,每个数据点是一个$d$维的向量,向量组成一个data矩阵$\mathbf{X}\in \mathbb{R}^{n\times d}$,这是我们的输入特征矩阵 ...
The Learning Rate An important consideration is the learning rate µ, which determi ...
norm(A,p)当A是向量时norm(A,p) Returns sum(abs(A).^zhip)^(/p), for any <= p <= ∞.norm(A) Returns nor ...
sklearn中实现随机梯度下降法 随机梯度下降法是一种根据模拟退火的原理对损失函数进行最小化的一种计算方式,在sklearn中主要用于多元线性回归算法中,是一种比较高效的最优化方法,其中的梯度下降系数(即学习率eta)随着遍历过程的进行在不断地减小。另外,在运用随机梯度下降法之前需要利用 ...
1. 梯度 在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。比如函数f(x,y), 分别对x,y求偏导数,求得的梯度向量就是(∂f/∂x, ∂f/∂y)T,简称grad f(x,y)或者▽f(x,y)。对于在点(x0,y0)的具体梯度向量 ...
(1)梯度下降法 在迭代问题中,每一次更新w的值,更新的增量为ηv,其中η表示的是步长,v表示的是方向 要寻找目标函数曲线的波谷,采用贪心法:想象一个小人站在半山腰,他朝哪个方向跨一步,可以使他距离谷底更近(位置更低),就朝这个方向前进。这个方向可以通过微分得到。选择足够小的一段曲线 ...