前言 本篇我们将总结的算法为Microsoft时序算法的结果预测值,是上一篇文章Microsoft时序算法的一个总结,上一篇我们已经基于微软案例数据库的销售历史信息表,利用Microsoft时序算法对其结果进行了预测,并且相应形成了折线预测图和模型依赖属性,有兴趣的同学可以点击查看,但是上篇 ...
前言 本篇文章主要是继续前几篇Microsoft决策树分析算法 Microsoft聚类分析算法 Microsoft Naive Bayes 算法,算法介绍后,经过这几种算法综合挖掘和分析之后,对一份摆在公司面前的人员信息列表进行推测,挖掘出这些人员信息中可能购买自行车的群体,把他们交个营销部,剩下的事就是他们无情的对这群团体骚扰 推荐 营销....结果你懂的 本篇也是数据挖掘各层次间最高的产物,推 ...
2014-10-10 16:52 11 5084 推荐指数:
前言 本篇我们将总结的算法为Microsoft时序算法的结果预测值,是上一篇文章Microsoft时序算法的一个总结,上一篇我们已经基于微软案例数据库的销售历史信息表,利用Microsoft时序算法对其结果进行了预测,并且相应形成了折线预测图和模型依赖属性,有兴趣的同学可以点击查看,但是上篇 ...
前言 本篇文章继续我们的微软挖掘系列算法总结,前几篇文章已经将相关的主要算法做了详细的介绍,我为了展示方便,特地的整理了一个目录提纲篇:大数据时代:深入浅出微软数据挖掘算法总结连载,有兴趣的童鞋可以点击查阅,在开始Microsoft 神经网络分析算法之前,本篇我们先将神经网络分析算法做一个简单 ...
随着大数据时代的到来,数据挖掘的重要性就变得显而易见,几种作为最低层的简单的数据挖掘算法,现在利用微软数据案例库做一个简要总结。 应用场景介绍 其实数据挖掘应用的场景无处不在,很多的环境都会应用到数据挖掘,之前我们没有应用是因为还没有学会利用数据,或者说还没有体会到数据的重要性,现在 ...
前言 本篇继续我们的微软挖掘算法系列总结,前几篇我们分别介绍了:Microsoft决策树分析算法、Microsoft聚类分析算法、Microsoft Naive Bayes 算法、Microsoft 时序算法,后续还补充了二篇结果预测篇、Microsoft 时序算法——结果预算+下期彩票预测篇 ...
前言 本篇文章继续我们的微软挖掘系列算法总结,前几篇文章已经将相关的主要算法做了详细的介绍,我为了展示方便,特地的整理了一个目录提纲篇:大数据时代:深入浅出微软数据挖掘算法总结连载,有兴趣的童鞋可以点击查阅,本篇我们将要总结的算法为:Microsoft顺序分析和聚类分析算法,此算法为上一篇中 ...
前言 本篇文章同样是继续微软系列挖掘算法总结,前几篇主要是基于状态离散值或连续值进行推测和预测,所用的算法主要是三种:Microsoft决策树分析算法、Microsoft聚类分析算法、Microsoft Naive Bayes 算法,当然后续还补充了一篇结果预测篇,所涉及的应用场景在前几篇文章中 ...
本篇文章主要是继续上一篇Microsoft决策树分析算法后,采用另外一种分析算法对目标顾客群体的挖掘,同样的利用微软案例数据进行简要总结。 应用场景介绍 通过上一篇中我们采用Microsoft决策树分析算法对已经发生购买行为的订单中的客户属性进行了分析,可以得到几点重要的信息,这里做个总结 ...
本篇文章主要是继续上两篇Microsoft决策树分析算法和Microsoft聚类分析算法后,采用另外更为简单一种分析算法对目标顾客群体的挖掘,同样的利用微软案例数据进行简要总结。有兴趣的同学可以先参照上面两种算法过程。 应用场景介绍 通过前面两种算法的应用场景介绍,此次总结的Microsoft ...