级联分类器训练 adaboost分类器由级联分类器构成,"级联"是指最终的分类器是由几个简单分类器级联组成。在图像检测中,被检窗口依次通过每一级分类器,这样在前面几层的检测中大部分的候选区域就被排除了,全部通过每一级分类器检测的区域即为目标区域。 分类器训练完以后,就可以应用于输入图像中 ...
介绍 使用级联分类器工作包括两个阶段:训练和检测。 检测部分在OpenCVobjdetect模块的文档中有介绍,在那个文档中给出了一些级联分类器的基本介绍。当前的指南描述了如何训练分类器:准备训练数据和运行训练程序。参考:http: jingyan.baidu.com article dc f c d f .html 利用OpenCV自带的haartraining程序训练一个分类器,需要经过以下 ...
2014-09-29 19:37 0 4701 推荐指数:
级联分类器训练 adaboost分类器由级联分类器构成,"级联"是指最终的分类器是由几个简单分类器级联组成。在图像检测中,被检窗口依次通过每一级分类器,这样在前面几层的检测中大部分的候选区域就被排除了,全部通过每一级分类器检测的区域即为目标区域。 分类器训练完以后,就可以应用于输入图像中 ...
本文为作者原创,未经允许不得转载;原文由作者发表在博客园: http://www.cnblogs.com/panxiaochun/p/5345412.html HaarTraining步骤 ...
众所周知,opencv下有自带的供人脸识别以及行人检测的分类器,也就是说已经有现成的xml文件供你用。如果我们不做人脸识别或者行人检测,而是想做点其他的目标检测该怎么做呢?答案自然是自己训练一个特定的训练器。opencv里面比较常用的分类器有svm以及级联分类器,svm的训练以及分类很简单 ...
一、简介: adaboost分类器由级联分类器构成,"级联"是指最终的分类器是由几个简单分类器级联组成。在图像检测中,被检窗口依次通过每一级分类器,这样在前面几层的检测中大部分的候选区域就被排除了,全部通过每一级分类器检测的区域即为目标区域。 分类器训练完以后,就可以应用于输入图像中 ...
作者|OpenCV-Python Tutorials 编译|Vincent 来源|OpenCV-Python Tutorials 简介 使用弱分类器的增强级联包括两个主要阶段:训练阶段和检测阶段。对象检测教程中介绍了使用基于HAAR或LBP模型的检测阶段。本文档概述了训练自己的弱分类器的级联 ...
分类器的训练以分为以下三部进行: 1、 样本的创建 2、 训练分类器 3、 利用训练好的分类器进行目标检测。 对检测物体要确定其属性:是否为绝对刚性的物体,也就是检测的目标是一个固定物体,没有变化(如特定公司的商标),这样的物体只要提供一份样本就可以进行训练 ...
级联分类器 cascade detector detector AdaBoost 读"P. Viola, M. Jones. Rapid Object Detection using ...
。 1.查找工具文件; opencv中的自带的分类器训练工具在开源库中以应用程序的类型呈现的,具体目 ...