内容概要: (1) 介绍神经网络基本原理 (2) AForge.NET实现前向神经网络的方法 (3) Matlab实现前向神经网络的方法 ---引例 文中以Fisher的Iris数据集作为神经网络程序的测试数据集。Iris数据集可以在http ...
Back Propagation Neural Networks Written in Python. See http: www.python.org Placed in the public domain. Neil Schemenauer lt nas arctrix.com gt import mathimport randomimport stringrandom.seed calcu ...
2014-07-28 11:42 0 5837 推荐指数:
内容概要: (1) 介绍神经网络基本原理 (2) AForge.NET实现前向神经网络的方法 (3) Matlab实现前向神经网络的方法 ---引例 文中以Fisher的Iris数据集作为神经网络程序的测试数据集。Iris数据集可以在http ...
我们在设计机器学习系统时,特别希望能够建立类似人脑的一种机制。神经网络就是其中一种。但是考虑到实际情况,一般的神经网络(BP网络)不需要设计的那么复杂,不需要包含反馈和递归。人工智能的一大重要应用,是分类问题。本文通过分类的例子,来介绍神经网络。 1.最简单的线性分类 一个最简单的分类 ...
机器学习算法完整版见fenghaootong-github 神经网络原理 感知机学习算法 神经网络 从感知机到神经网络 多层前馈神经网络 bp算法 感知机学习算法 感知机(perceptron)是二分类的线性分类模型 ...
1. 背景: 1.1 以人脑中的神经网络为启发,历史上出现过很多不同版本 1.2 最著名的算法是1980年的 backpropagation 2. 多层向前神经网络(Multilayer Feed-Forward Neural Network ...
我们在设计机器学习系统时,特别希望能够建立类似人脑的一种机制。神经网络就是其中一种。但是考虑到实际情况,一般的神经网络(BP网络)不需要设计的那么复杂,不需要包含反馈和递归。 人工智能的一大重要应用,是分类问题。本文通过分类的例子,来介绍神经网络。 1.最简单的线性分类 一个最简单的分类 ...
一、BP算法的意义 对于初学者来说,了解了一个算法的重要意义,往往会引起他对算法本身的重视。BP(Back Propagation,后向传播)算法,具有非凡的历史意义和重大的现实意义。 1.1、历史意义 1969年,作为人工神经网络创始人的明斯基(Marrin M ...
主要是对《tensorflow 实战google深度学习框架》的第三章中在模拟数据集上训练神经网络的完整程序进行详解, 所利用的神经网络结构图如下 详细代码如下 引入模块的设置,因为实在模拟数据集中运行一个完整的神经网络,因此需要做的事情是引入随机数 ...
神经网络是如何工作的 前言 计算机所在的在本质上都是一系列的加法操作,只是计算机运行速度要快很多。但是有些任务对于人来说很简单,对于计算机来说却很困难(比如图像识别)。 预测器 神经网络和计算机一样,对于输入和输出都做了一些处理,当我们不知道这些是什么具体处理的时候,可以使用模型 ...