DAGScheduler的架构其实非常简单, 1. eventQueue, 所有需要DAGScheduler处理的事情都需要往eventQueue中发送event 2. eventLoop Thread, 会不断的从eventQueue中获取event并处理 3. 实现 ...
DAGScheduler概述:是一个面向Stage层面的调度器 主要入参有: dagScheduler.runJob rdd,cleanedFunc, partitions, callSite, allowLocal,resultHandler, localProperties.get rdd: final RDD cleanedFunc: 计算每个分区的函数 resultHander: 结果侦听 ...
2014-07-05 18:17 1 4536 推荐指数:
DAGScheduler的架构其实非常简单, 1. eventQueue, 所有需要DAGScheduler处理的事情都需要往eventQueue中发送event 2. eventLoop Thread, 会不断的从eventQueue中获取event并处理 3. 实现 ...
背景: 前几天了解了spark了运行架构,spark代码提交给driver时候会根据rdd生成DAG,那么实际DAG在代码中是如何生成的呢? 首先了解,spark任务中的几个划分点: 1.job:job是由rdd的action来划分,每一个action操作是在spark任务 ...
Spark中的任务管理是很重要的内容,可以说想要理解Spark的计算流程,就必须对它的任务的切分有一定的了解。不然你就看不懂Spark UI,看不懂Spark UI就无法去做优化...因此本篇就从源码的角度说说其中的一部分,Stage的切分——DAG图的创建 先说说概念 在Spark ...
导入 从一个Job运行过程中来看DAGScheduler是运行在Driver端的,其工作流程如下图: 图中涉及到的词汇概念: 1. RDD——Resillient Distributed Dataset 弹性分布式数据集。 2. Operation——作用于RDD的各种操作分为 ...
前言:本文是我学习Spark 源码与内部原理用,同时也希望能给新手一些帮助,入道不深,如有遗漏或错误的,请在原文评论或者发送至我的邮箱 tongzhenguotongzhenguo@gmail.com 摘要: 1.作业调度核心——DAGScheduler ...
一、Spark 运行架构 Spark 运行架构如下图: 各个RDD之间存在着依赖关系,这些依赖关系形成有向无环图DAG,DAGScheduler对这些依赖关系形成的DAG,进行Stage划分,划分的规则很简单,从后往前回溯,遇到窄依赖加入本stage,遇见宽依赖进行Stage切分 ...
终于开始看Spark源码了,先从最常用的spark-shell脚本开始吧。不要觉得一个启动脚本有什么东东,其实里面还是有很多知识点的。另外,从启动脚本入手,是寻找代码入口最简单的方法,很多开源框架,其实都可以通过这种方式来寻找源码入口。 先来介绍一下Spark-shell是什么 ...
CP的步骤 1. 首先如果RDD需要CP, 调用RDD.checkpoint()来mark 注释说了, 这个需要在Job被执行前被mark, 原因后面看, 并且最好选择persist这个RDD, ...