鲁棒局部加权回归 【转载时请注明来源】:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正。 算法参考文献: (1) Robust Locally Weighted Regression ...
Robust regression 稳健回归 语法 b robustfit X,y b robustfit X,y,wfun,tune b robustfit X,y,wfun,tune,const b,stats robustfit ... 描述 b robustfit X,y 通过执行稳健回归来估计线性模型y Xb,并返回一个由回归系数组成的向量b。X是一个n p预测变量矩阵,y是一个n 观 ...
2014-05-19 17:44 0 7120 推荐指数:
鲁棒局部加权回归 【转载时请注明来源】:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正。 算法参考文献: (1) Robust Locally Weighted Regression ...
转自:打开链接 Bounding-Box regression 最近一直看检测有关的Paper, 从rcnn, fast rcnn, faster rcnn, yolo, r-fcn, ssd,到今年cvpr最新的yolo9000。这些paper中损失函数都包含 ...
本篇文章来自wikipedia,如果需要阅读英文,可以去看一下。 SURF (Speeded Up Robust Features, 加速稳健特征) 是一个稳健的图像识别和描述算法,首先于2006年发表在ECCV大会上。这个算法可被用于计算机视觉任务,如物件识别和3D重构。他部分的灵感来自于 ...
逻辑回归从线性回归引申而来,对回归的结果进行 logistic 函数运算,将范围限制在[0,1]区间,并更改损失函数为二值交叉熵损失,使其可用于2分类问题(通过得到的概率值与阈值比较进行分类)。逻辑回归要求输入的标签数据是01分布(伯努利分布),而线性回归则是对任意连续值的回归。出世 ...
。将度量方法稍作修改,就可以实现回归树。 二、混乱度 分类树中我们用信息熵和信息增益来决定最优划分属 ...
一、主要思想 在 L2-norm 的误差意义下寻找对所有观测目标值 Y 拟合得最好的函数 f(X) = WTX 。 其中 yi 是 scalar,xi 和 W 都是 P 维向量(比实际的 xi 多 ...
转载请注明出处:http://www.cnblogs.com/BYRans/ 多分类问题 在一个多分类问题中,因变量y有k个取值,即。例如在邮件分类问题中,我们要把邮件分为垃圾邮件、个 ...
1. 前言 线性回归形式简单、易于建模,但却蕴涵着机器学习中一些重要的基本思想。许多功能更为强大的非线性模型(nonlinear model)可在线性模型的基础上通过引入层级结构或高维映射而得。此外,由于线性回归的解\(\theta\)直观表达了各属性在预测中的重要性,因此线性回归有很好的可解释 ...