高斯消元法: 常用来解线性方程组,例如: 首先,我们需要提出各个系数,因为消元只和系数有关系。 -> 这样转成矩阵的模样存下来。 每次消元需要选择一个方程作为消元方程,然后用这个方程消去其他方程(非消元方程)中的某个元。 我们从前往后消,从上往下选择方程 ...
高斯消元法: 常用来解线性方程组,例如: 首先,我们需要提出各个系数,因为消元只和系数有关系。 -> 这样转成矩阵的模样存下来。 每次消元需要选择一个方程作为消元方程,然后用这个方程消去其他方程(非消元方程)中的某个元。 我们从前往后消,从上往下选择方程 ...
自学了一阵高斯消元啦,感觉这个东西听着高深,其实还是很Logical(有逻辑的)。下面我就分享一下自己对高斯消元的认识啦,希望也可以帮初学者了解这个算法。 首先我们要清楚:高斯消元的目的在于求线性方程组的解。 所以呢,我们先从一个小小的解方程组的例子开始: 伟大的数学天才 ...
高斯消元法 首先,我们导入几个概念。 定义1: 一个矩阵称为阶梯形(行阶梯形),若它有以下三个性质: 1.每一非零行在每一零行之上; 2.某一行的先导元素所在的列位于前一行先导元素的后面; 3.某一行先导元素所在列下方元素都是零。 比如, 定义2:若一个阶梯形矩阵 ...
...
要用到之前发的解上三角矩阵和下三角矩阵方程的模块tri_eq.f90。 博客园代码不支持fortran格式。。。 ...
运行结果如下 ...
有多组测试数据。每组测试数据先输入一个整数n,表示方阵的阶。然后下面输入n阶方阵。输出其逆矩阵。若无逆矩阵,则输出No inverse matrix。 ...
高斯消元其实在算法竞赛中算是一个十分常见的算法。它的大致思想就和初中阶段学到的加减消元法差不多。这个算法的时间复杂度为\(O(n^3)\),是一个相当简单的算法,但是具体实现需要一些思考。 这里给出模板题的链接: 洛谷P3389 P4035 1.1 问题引入 给定方程组 ...