原文:统计学习方法笔记 -- 概论

统计学习方法是基于训练数据构建统计模型,从而对数据进行预测和分析。 统计学习分为,监督学习 supervised learning ,非监督学习,半监督学习和强化学习 reinforcement learning ,其中以监督学习最为常见和重要,所以这里只讨论监督学习 统计学习的过程如下, . 获取训练数据集合 . 确定假设空间,即所有可能的模型的集合 . 确定模型选择的准则 什么是最优模型的标准 ...

2014-03-14 18:25 3 2076 推荐指数:

查看详情

李航-统计学习方法-笔记-1:概论

写在前面 本系列笔记主要记录《统计学习方法》中7种常用的机器学习分类算法,包括感知机,KNN,朴素贝叶斯,决策树,逻辑斯谛回归与最大熵模型,SVM,boosting。 课本还涉及到3种算法是关于概率模型估计和标注问题的,暂未列入学习计划,所以笔记中没有涉及,包括EM算法,隐马尔可夫模型,条件 ...

Wed Jun 05 22:48:00 CST 2019 0 1144
统计学习方法 李航---第1章 统计学习方法概论

第一章 统计学习方法概论 统计学习的主要特点是: (1)统计学习以计算机及网络为平台,是建立在计 算机及网络之上的; (2)统计学习以数据为研究对象,是数据驱动的学科; (3)统 ...

Sun Jul 26 18:26:00 CST 2015 0 2166
统计学习方法学习笔记

上学期花了一个多月读完了李航老师的《统计学习方法》,现在带着新入团队的新同学以读书会的形式读这本书,书里边全是干货,对于我理解基本的机器学习算法很有帮助,也笔头做了一些总结(不完全基于此书),现将其摘录于此作为在博客园的第一篇博客。因为并不是为了扫盲,所以仅仅是抓出脉络以及关键点,方便以后快速温习 ...

Fri Jun 12 20:26:00 CST 2015 0 4620
统计学习方法(一)

等组成。 统计学习方法包括假设空间、模型选择的准则、模型学习的算法,这些统称为统计学习方法的三要素: ...

Sun May 10 07:18:00 CST 2015 0 3052
李航-统计学习方法-笔记-8:提升方法

提升方法 简述:提升方法(boosting)是一种常用的统计学习方法,应用广泛且有效。在分类问题中,它通过改变训练样本的权重,学习多个分类器,并将这些分类器进行线性组合,提高分类的性能。 本章 (1)介绍boosting方法的思路和代表性的boosting算法AdaBoost (2)通过训练 ...

Wed Jun 05 23:54:00 CST 2019 0 678
李航-统计学习方法-笔记-3:KNN

KNN算法 基本模型:给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的k个实例。这k个实例的多数属于某个类,就把输入实例分为这个类。 KNN没有显式的学习过程。 KNN使用的模型实际上对应于特征空间的划分。特征空间中,对每个训练实例点\(x_i\),距离该点比其它点更近 ...

Wed Jun 05 23:11:00 CST 2019 0 535
李航-统计学习方法-笔记-12:总结

10种统计学习方法特点的概括总结 本书共介绍了10种主要的统计学习方法:感知机,KNN,朴素贝叶斯,决策树,逻辑斯谛回归与最大熵模型,SVM,提升方法,EM算法,隐马尔可夫模型,条件随机场(CRF)。 适用问题 感知机,KNN,朴素贝叶斯,决策树,逻辑斯谛回归与最大熵模型,SVM,提升 ...

Wed Jun 05 23:58:00 CST 2019 0 669
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM