4.2.2 总排序(Total order sorting) 有的时候需要将作业的的所有输出进行总排序,使各个输出之间的结果是有序的。有以下实例: 如果要得到某个网站中最受欢迎的网址(URL),就需要根据某种受欢迎的指标来对网址进行排序。 如果要让最活跃的用户能够看到某张表,就需要 ...
. 排序 SORT 在MapReduce中,排序的目的有两个: MapReduce可以通过排序将Map输出的键分组。然后每组键调用一次reduce。 在某些需要排序的特定场景中,用户可以将作业 job 的全部输出进行总体排序。 例如:需要了解前N个最受欢迎的用户或网页的数据分析工作。 在这一节中,有两个场景需要对MapReduce的排序行为进行优化。 次排序 Secondary sort 总排序 ...
2014-03-07 06:18 0 6693 推荐指数:
4.2.2 总排序(Total order sorting) 有的时候需要将作业的的所有输出进行总排序,使各个输出之间的结果是有序的。有以下实例: 如果要得到某个网站中最受欢迎的网址(URL),就需要根据某种受欢迎的指标来对网址进行排序。 如果要让最活跃的用户能够看到某张表,就需要 ...
6.4.3 优化洗牌(shuffle)和排序阶段 洗牌和排序阶段都很耗费资源。洗牌需要在map和reduce任务之间传输数据,会导致过大的网络消耗。排序和合并操作的消耗也是很显著的。这一节将介绍一系列的技术来缓解洗牌和排序阶段的消耗。 技术46 规避使用reduce Reduce在用 ...
4.3 抽样(Sampling) 用基于MapReduce的程序来处理TB级的数据集,要花费的时间可能是数以小时计。仅仅是优化代码是很难达到良好的效果。 在开发和调试代码的时候,没有必要处理整个数据集。但如果在这种情况下要保证数据集能够被正确地处理,就需要用到抽样了。抽样是统计学中的一个方法 ...
4.1.2 复制连接(Replication join) 复制连接是map端的连接。复制连接得名于它的具体实现:连接中最小的数据集将会被复制到所有的map主机节点。复制连接有一个假设前提:在被连接的数据集中,有一个数据集足够小到可以缓存在内存中。 如图4.5所示,MapReduce复制连接工作 ...
数以百万计的图片存储分别在HDFS中。很不幸的是,这样做恰好碰上了HDFS和MapReduce的弱项,如下: ...
自己学习排序和二次排序的知识整理如下。 1.Hadoop的序列化格式介绍:Writable 2.Hadoop的key排序逻辑 3.全排序 4.如何自定义自己的Writable类型 5.如何实现二次排序 1.Hadoop ...
1、MapReduce中数据流动 (1)最简单的过程: map - reduce (2)定制了partitioner以将map的结果送往指定reducer的过程: map - partition - reduce (3)增加了在本地先进性一次reduce(优化)过程: map ...
4.1.3 半连接(Semi-join) 假设一个场景,需要连接两个很大的数据集,例如,用户日志和OLTP的用户数据。任何一个数据集都不是足够小到可以缓存在map作业的内存中。这样看来,似乎就不能使 ...