一、概念 K-means中心思想:事先确定常数K,常数K意味着最终的聚类类别数,首先随机选定初始点为质心,并通过计算每一个样本与质心之间的相似度(这里为欧式距离),将样本点归到最相似的类中,接着,重新计算每个类的质心(即为类中心),重复这样的过程,直到质心不再改变,最终就确定了每个样本 ...
K 均值算法初步学习 : : 转载 标签: 信息检索 k means k 均值 聚类 杂谈 分类:信息检索学习笔记 定义 K means Clustering Algorithm中文名也许叫 K均值聚类算法 ,是统计学和数据挖掘领域中常用的一种算法。k means clustering is a method of cluster analysis which aims to partition ...
2014-02-28 12:44 0 2387 推荐指数:
一、概念 K-means中心思想:事先确定常数K,常数K意味着最终的聚类类别数,首先随机选定初始点为质心,并通过计算每一个样本与质心之间的相似度(这里为欧式距离),将样本点归到最相似的类中,接着,重新计算每个类的质心(即为类中心),重复这样的过程,直到质心不再改变,最终就确定了每个样本 ...
K-均值聚类算法 聚类是一种无监督的学习算法,它将相似的数据归纳到同一簇中。K-均值是因为它可以按照k个不同的簇来分类,并且不同的簇中心采用簇中所含的均值计算而成。 K-均值算法 算法思想 K-均值是把数据集按照k个簇分类,其中k是用户给定的,其中每个簇是通过质心来计算簇的中心 ...
...
1)选取初始数据中的k个对象作为初始的中心,每个对象代表一个聚类中心: 2) 3) 4) 2.鸢尾花花瓣长度做聚类分析并用散点图显示出来 3.用sklearm包 ...
一.k均值聚类算法 对于样本集。"k均值"算法就是针对聚类划分最小化平方误差: 其中是簇Ci的均值向量。从上述公式中可以看出,该公式刻画了簇内样本围绕簇均值向量的紧密程度,E值越小簇内样本的相似度越高。 工作流程: k-均值算法的描述如下: 接下 ...
...
这篇博客整理K均值聚类的内容,包括: 1、K均值聚类的原理; 2、初始类中心的选择和类别数K的确定; 3、K均值聚类和EM算法、高斯混合模型的关系。 一、K均值聚类的原理 K均值聚类(K-means)是一种基于中心的聚类算法,通过迭代,将样本分到K个类中,使得每个样本与其所属类 ...
算法原理 KMeans算法是典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。K个初始聚类中心点的选取对聚类结果具有较大的影响,因为在该算法第一步中是随机地选取任意k ...