原文:特征选择之卡方检验

特征选择的常用方法之一是卡方检验,作为一个filter model的代表,卡方检验属于简单易计算的Feature weight algorithm 通过一定的measure方法给特征赋上一定的weight来表征与类别之间的相关度,通过weight大于一定阈值或选取topk个weight来进行特征选择 。卡方检验和信息增益是feature weight algorithm常用且效果较优的算法。 卡 ...

2014-01-16 11:05 0 11664 推荐指数:

查看详情

特征选择检验、F 检验和互信息

特征选择特征工程中的重要一环,其主要目的是从所有特征中选出相关特征 (relevant feature),或者说在不引起重要信息丢失的前提下去除掉无关特征 (irrelevant feature) 和冗余特征 (redundant feature)。进行特征选择的好处主要有以下几种 ...

Fri Mar 08 14:45:00 CST 2019 1 5279
文本分类学习 (四) 特征选择检验

前言: 上一篇提到了特征提取,或者叫做降维。在文本分类中,特征提取算法的优劣对于文本分类的结果具有非常大的影响。 所以选择效果好的特征提取算法是文本分类前中很重要的步骤。于是这篇就对检验做一个介绍。这是一个效果很好的特征提取方法。 之前对检验做过介绍:检验是通过对特征进行打分然后排 ...

Tue Apr 10 01:55:00 CST 2018 4 10763
特征选择---SelectKBest

官网的一个例子(需要自己给出计算公式、和k值) 参数 1、score_func ...

Wed Jan 13 04:01:00 CST 2021 0 307
特征选择

概述 针对某种数据,通过一定的特征提取手段,或者记录观测到的特征,往往得到的是一组特征,但其中可能存在很多特征与当前要解决的问题并不密切等问题。另一方面,由于特征过多,在处理中会带来计算量大、泛化能力差等问题,即所谓的“维数灾难”。 特征选择便是从给定的特征集合中选出相关特征子集的过程 ...

Sat Jan 19 05:39:00 CST 2019 0 1046
mRMR特征选择

1、介绍   Max-Relevance and Min-Redundancy,最大相关—最小冗余。最大相关性保证特征和类别的相关性最大;最小冗余性确保特征之间的冗余性最小。它不仅考虑到了特征和标注之间的相关性,还考虑到了特征特征之间的相关性。度量标准使用的是互信息(Mutual ...

Wed Mar 09 02:46:00 CST 2022 2 1408
特征选择-嵌入

3.2 Embedded嵌入法 嵌入法是一种让算法自己决定使用哪些特征的方法,即特征选择和算法训练同时进行。在使用嵌入法时,我们先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据权值系数从大到小选择特征。这些权值系数往往代表了特征对于模型的某种贡献或某种重要性,比如决策树和树 ...

Tue Apr 23 01:43:00 CST 2019 0 587
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM