PersistenceStreaming没有做特别的事情,DStream最终还是以其中的每个RDD作为job进行调度的,所以persistence就以RDD为单位按照原先Spark的方式去做就可以了,不同的是Streaming是无限,需要考虑Clear的问题在clearMetadata时,在删除 ...
CP的步骤 . 首先如果RDD需要CP, 调用RDD.checkpoint 来mark 注释说了, 这个需要在Job被执行前被mark, 原因后面看, 并且最好选择persist这个RDD, 否则在存CP文件时需要重新computeRDD内容 并且当RDD被CP后, 所有dependencies都会被清除, 因为既然RDD已经被CP, 那么就可以直接从文件读取, 没有必要保留之前的parents ...
2014-01-10 18:24 7 2936 推荐指数:
PersistenceStreaming没有做特别的事情,DStream最终还是以其中的每个RDD作为job进行调度的,所以persistence就以RDD为单位按照原先Spark的方式去做就可以了,不同的是Streaming是无限,需要考虑Clear的问题在clearMetadata时,在删除 ...
转发请注明原创地址http://www.cnblogs.com/dongxiao-yang/p/8029356.html checkpoint是Flink Fault Tolerance机制的重要构成部分,flink checkpoint的核心类名为 ...
转发请注明原创地址http://www.cnblogs.com/dongxiao-yang/p/8260370.html flink checkpoint 源码分析 (一)一文主要讲述了在JobManager端定时生成TriggerCheckpoint的代码部分,本文继续研究 ...
前言 在Flink原理——容错机制一文中,已对checkpoint的机制有了较为基础的介绍,本文着重从源码方面去分析checkpoint的过程。当然本文只是分析做checkpoint的调度过程,只是尽量弄清楚整体的逻辑,没有弄清楚其实现细节,还是有遗憾的,后期还是努力去分析实现细节。文中 ...
本文源码基于flink1.14 在帮助用户排查任务的时候,经常会发现部分task处理的慢,在Exactly once语义时需要等待快照的对齐而白白柱塞的情况 在flink1.11版本引入了非对齐的checkpoint,来解决这种柱塞问题,所以来看看这个新特性的源码是如何实现的 先看下官网的图 ...
本课主题 Checkpoint 运行原理图 Checkpoint 源码解析 引言 Checkpoint 到底是什么和需要用 Checkpoint 解决什么问题: Spark 在生产环境下经常会面临 Transformation 的 RDD 非常多(例如一个Job ...
终于开始看Spark源码了,先从最常用的spark-shell脚本开始吧。不要觉得一个启动脚本有什么东东,其实里面还是有很多知识点的。另外,从启动脚本入手,是寻找代码入口最简单的方法,很多开源框架,其实都可以通过这种方式来寻找源码入口。 先来介绍一下Spark-shell是什么 ...
和一般RDD最大的不同就是有两个泛型参数, [K, V]表示pair的概念 关键的function是, combineByKey, 所有pair相关操作的抽象 combine是这样的操作, Turn ...