原文:随机森林介绍

前面的一篇博客:分类算法之决策树介绍了决策树算法,从介绍中可以发现,决策树有些与生俱来的缺点: :分类规则复杂 决策树算法在产生规则的时候采用局部贪婪法。每次都只选择一个属性进行分析构造决策树,所以再产生的分类规则往往相当复杂。 :收敛到非全局的局部最优解 ID 算法每次在树的某个层次进行属性选择时,它不再回溯重新考虑这个选择,所以它容易产生盲人登山中常见的风险,仅仅收敛到非全局的局部最优解。 : ...

2013-11-12 21:15 0 3174 推荐指数:

查看详情

随机森林原理介绍与适用情况

随机森林原理介绍与适用情况 一句话介绍 随机森林是一种集成算法(Ensemble Learning),它属于 Bagging 类型,通过组合多个弱分类器,最终结果通过投票或取均值,使得整体模型的结果具有较高的精确度和泛化性能。其可以取得不错成绩,主要归功于 “随机” 和 “森林”,一个使它具有 ...

Sat May 16 07:41:00 CST 2020 0 1264
随机森林

概述 鉴于决策树容易过拟合的缺点,随机森林采用多个决策树的投票机制来改善决策树,我们假设随机森林使用了m棵决策树,那么就需要产生m个一定数量的样本集来训练每一棵树,如果用全样本去训练m棵决策树显然是不可取的,全样本训练忽视了局部样本的规律,对于模型的泛化能力是有害的 产生n个样本的方法采用 ...

Thu May 10 18:28:00 CST 2018 0 1901
随机森林

三个臭皮匠顶个诸葛亮       --谁说的,站出来! 1 前言   在科学研究中,有种方法叫做组合,甚是强大,小硕们毕业基本靠它了。将别人的方法一起组合起来然后搞成一个集成的算法,集百家 ...

Wed Jan 20 03:00:00 CST 2016 0 2582
随机森林

随机森林】是由多个【决策树】构成的,不同决策树之间没有关联。 特点 可以使用特征多数据,且无需降维使用,无需特征选择。 能够进行特征重要度判断。 能够判断特征间的相关影响 不容器过拟合。 训练速度快、并行。 实现简单。 不平衡数据集、可平衡误差 ...

Tue Dec 14 01:41:00 CST 2021 0 162
随机森林

什么是随机森林随机森林就是通过集成学习的思想将多棵树集成的一种算法,它的基本单元是决策树,而它的本质属于机器学习的一大分支——集成学习(Ensemble Learning)方法。随机森林的名称中有两个关键词,一个是“随机”,一个就是“森林”。“森林”我们很好理解,一棵叫做树,那么成百上千棵 ...

Fri Apr 12 23:48:00 CST 2019 0 991
随机森林

http://www.36dsj.com/archives/32820 简介 近年来,随机森林模型在界内的关注度与受欢迎程度有着显著的提升,这多半归功于它可以快速地被应用到几乎任何的数据科学问题中去,从而使人们能够高效快捷地获得第一组基准测试结果。在各种各样的问题中,随机森林一次又一次 ...

Fri Oct 02 05:07:00 CST 2015 0 22155
随机森林, Random Forest

随机森林的优点 (随机森林(Random forest,RF)的生成方法以及优缺点_zhongjunlang的专栏) 在当前所有算法中,具有较高的准确率, 即使存在缺失值问题 能够有效地运行在大数据集上 能够处理具有高维特征的输入样本,而且不需要降维 对于不平衡数据集来说,随机 ...

Sun Aug 15 07:22:00 CST 2021 0 109
随机森林 python实现

本文转载自:https://github.com/apachecn/AiLearning/blob/e6ddd161f89f42d45fcee483b2292a8c7b2a9638/src/py2.x ...

Fri Nov 08 00:29:00 CST 2019 2 1656
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM