下降单纯形法(downhill simplex method)是一个广泛使用的“derivative free”的优化算法。一般来说它的效率不高,但是文献[1]提到“the downhill simplex method may frequently be the *best* method ...
最近在上最优理论这门课,刚开始是线性规划部分,主要的方法就是单纯形方法,学完之后做了一下大M算法和分段法的仿真,拿出来与大家分享一下。单纯形方法是求解线性规划问题的一种基本方法。 线性规划就是在一系列不等式约束下求目标函数最大值或最小值的问题,要把数学中的线性规划问题用计算机来解决,首先要确定一个标准形式。 将所给的线性规划问题化为标准形式: s.t.是英文subject to 的简写,意思是受约 ...
2013-11-12 22:52 0 8790 推荐指数:
下降单纯形法(downhill simplex method)是一个广泛使用的“derivative free”的优化算法。一般来说它的效率不高,但是文献[1]提到“the downhill simplex method may frequently be the *best* method ...
线性规划 首先一般所有的线性规划问题我们都可以转换成如下标准型: 但是我们可以发现上面都是不等式,而我们计算中更希望是等式,所以我们引入这个新的概念:松弛型: 很显然我们最后要求是所有的约束左边的变量都不小于0。而求解这类问题,我们又有一套十分便利的模型算法:单纯形 基变量:松弛型 ...
线性规划常用的方法是单纯形表法,下面用一个简单的例子告诉大家如何用最简单的方法求取目标函数Z值。 用单纯形方法求解线性规划问题 : 首先引入松弛变量 ,把原问题化为 标准形式: 具体步骤如下: 第1步,确定初始单纯形表 第2步: 判别检验所有的检验系数 (1)如果所有的检验 ...
单纯形法的来历 在求解LP问题时,有人给出了图解法,但对多维变量时,却无能为力。 于是,美国数学家G.B. Dantzig (丹捷格)发明了一种“单纯形法”的代数算法,尤其是方便于计算机运算。这是运筹学史上最辉煌的阶段。 与单纯形法有关的三条定理: 翻译一下 ...
单纯形法是针对求解线性规划问题的一个算法,这个名称里的'单纯形'是代数拓扑里的一个概念,可以简单将'单纯形'理解为一个凸集,标准的线性规划问题可以表示为: min(or max) f(x)=cx s.t. Ax=b ...
看了集训队答辩,感觉要学习的有杜教筛高级版、线性规划、FFT、仙人掌、高级版线段树 不出意外的话一个月内博客内都不会有别的东西了QAQ 首先是喜闻乐见的单纯形法解线性规划。 今年(2016年)和线性规划有关的集训队论文有两篇,大家可以自行翻一下集训队论文(当然如果你没有拿到你可以去UOJ群 ...
提出单纯形的思路 我们知道,线性规划(LP)问题如果有最优解,必可在某个极点(基本可行解)上达到。一个直观的想法是:对于LP问题,找出所有的基本可行解,然后逐个比较,即枚举法。但是事实上,时间开销会非常大,假设原问题中有n个变量,m个约束条件,则时间开销为$C^{m}_{n}$,而$C^{m ...
线性规划(Linear Programming,LP)是非常经典的算法之一,而解决该问题的最常用方法是单纯形法。本博文致力于用最简单、最详细的语言一步步解释单纯形算法的过程并加以详细的解释。 中学课程里,我们都简单地接触过线性规划,那时候一般都是分析每个约束,在二维平面上画出直线,得到可行域 ...