原帖地址:http://www.opencvchina.com/thread-749-1-1.html k-means是一种聚类算法,这种算法是依赖于点的邻域来决定哪些点应该分在一个组中。当一堆点都靠的比较近,那这堆点应该是分到同一组。使用k-means,可以找到每一组的中心点 ...
原帖地址:http: blog.csdn.net qll article details .基本Kmeans算法 选择K个点作为初始质心 repeat 将每个点指派到最近的质心,形成K个簇 重新计算每个簇的质心 until 簇不发生变化或达到最大迭代次数 时间复杂度:O tKmn ,其中,t为迭代次数,K为簇的数目,m为记录数 采样数 ,n为维数 空间复杂度:O m K n ,其中,K为簇的数目, ...
2013-10-14 11:51 0 3476 推荐指数:
原帖地址:http://www.opencvchina.com/thread-749-1-1.html k-means是一种聚类算法,这种算法是依赖于点的邻域来决定哪些点应该分在一个组中。当一堆点都靠的比较近,那这堆点应该是分到同一组。使用k-means,可以找到每一组的中心点 ...
Kmeans聚类算法 1 Kmeans聚类算法的基本原理 K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类 ...
本章我们用kmeans算法实现一个简单图像的分割。如下面的图像,我们知道图像分3个簇,背景、白色的任务,红色的丝带以及帽子。 Mat img = cv::imread("../kmeans.jpg"); namedWindow("image ...
1、输入原始图片 2、代码实现: 效果图: ...
1、K-Means原理 K-Means算法的基本思想很简单,对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大。 如果用数据表达式表示,假设簇划分为(C1,C2,...Ck),则我们的目标是最小化平方误差E: \[E ...
下面的demo是根据kmeans算法原理实现的demo,使用到的数据是kmeans.txt View Code 下面这个demo是使用sklearn库实现聚类 当数据量很大的时候,会出现原始聚类算法 ...
function kmeans()clear all;clc;k=3;%k为聚类个数x = 0.8 + sqrt(0.01) * randn(100,2); %随机生成数据集y = 0.2 + sqrt(0.02) * randn(100,2);z= 0.5 + sqrt(0.01 ...
算法的概念不做过都解释,google一下一大把。直接贴上代码,有比较详细的注释了。 主程序: 自定义Point类: 测试数据集: ...