粒子群算法 粒子群算法是一种启发式算法,它的核心是思想是利用群体中的个体对信息的共享使整个群体的运动在问题求解空间中产生从无序到有序的演化过程,从而获得问题的可行解。 思想就是放一群鸟,每过一段时间更新(迭代)每只鸟的位置和速度。 粒子(鸟)的速度主要与三个因素有关,1、惯性 ...
简介 上次在自话遗传算法中提到后期会写两篇关于粒子群算法和蚁群算法的博文,所以这次给大家带来的是我对粒子群的一些理解,并附带一个相当简单的实例去描述这个算法,我会尽力通俗易懂的把整个算法描述一遍,其实粒子群算法的思想也挺简单的,希望我不要反而写复杂了,下面同样引用百度百科的摘要结束简介部分。 粒子群优化算法 PSO 是一种进化计算技术 evolutionary computation , 年由Eb ...
2013-10-06 22:44 9 36968 推荐指数:
粒子群算法 粒子群算法是一种启发式算法,它的核心是思想是利用群体中的个体对信息的共享使整个群体的运动在问题求解空间中产生从无序到有序的演化过程,从而获得问题的可行解。 思想就是放一群鸟,每过一段时间更新(迭代)每只鸟的位置和速度。 粒子(鸟)的速度主要与三个因素有关,1、惯性 ...
一、粒子群算法的历史 粒子群算法源于复杂适应系统(Complex Adaptive System,CAS)。CAS理论于1994年正式提出,CAS中的成员称为主体。比方研究鸟群系统,每一个鸟在这个系统中就称为主体。主体有适应性,它能够与环境及其它的主体进行交流,而且依据 ...
01 算法起源 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),1995 年由Eberhart 博士和kennedy 博士提出,源于对鸟群捕食的行为研究 。该算法最初是受到飞鸟集群活动的规律性启发,进而利用群体智能建立的一个简化模型。粒子群 ...
粒子群优化算法 1. 背景知识 1995年美国社会心理学家Kennedy和电气工程师Eberhart共同提出粒子群优化算法(Particle Swarm Optimization, PSO)。PSO算法的基本思想利用生物学家Heppner的生物群体模型,模拟鸟类觅食过程。鸟类飞行过程相互 ...
粒子群算法 粒子群算法是在1995年由Eberhart博士和Kennedy博士一起提出的,它源于对鸟群捕食行为的研究。它的基本核心是利用群体中的个体对信息的共享从而使整个群体的运动在问题求解空间中产生从无序到有序的演化过程,从而获得问题的最优解。设想这么一个场景:一群鸟进行觅食,而远处有一片玉米 ...
...
这几天看书的时候看到一个算法,叫粒子群算法,这个算法挺有意思的,下面说说我个人的理解: 粒子群算法(PSO)是一种进化算法,是一种求得近似最优解的算法,这种算法的时间复杂度可能会达到O(n!),得到的结果不一定是最优解,往往已经很接近最优解了。最早是Kenny 和 Eberhart于1995 ...
粒子群算法 粒子群算法,也称粒子群优化算法或鸟群觅食算法(Particle Swarm Optimization),缩写为 PSO, 是近年来由J. Kennedy和R. C. Eberhart等开发的一种新的进化算法(Evolutionary Algorithm - EA)。PSO ...