在最优化算法研究中按时间先后顺序出现了许多算法包括如下几种,这里介绍下他们的全称和英文名称: 1、最速下降法(Gradient descent) 2、牛顿法(Newton method) 3、 共轭梯度法(Conjugate Gradient) 4、拟牛顿法(Quasi-Newton ...
BGFS是一种准牛顿算法, 所谓的 准 是指牛顿算法会使用Hessian矩阵来进行优化, 但是直接计算Hessian矩阵比较麻烦, 所以很多算法会使用近似的Hessian, 这些算法就称作准牛顿算法 Quasi Newton Algorithm . . 牛顿算法 Newton Algorithm 牛顿算法考虑了函数的二阶单数, 是一种二阶优化方法, 并且是所有其他二阶优化方法的鼻祖. 作为对比, ...
2013-10-13 01:11 0 16301 推荐指数:
在最优化算法研究中按时间先后顺序出现了许多算法包括如下几种,这里介绍下他们的全称和英文名称: 1、最速下降法(Gradient descent) 2、牛顿法(Newton method) 3、 共轭梯度法(Conjugate Gradient) 4、拟牛顿法(Quasi-Newton ...
一、BFGS算法 在“优化算法——拟牛顿法之BFGS算法”中,我们得到了BFGS算法的校正公式: 利用Sherman-Morrison公式可对上式进行变换,得到 令,则得到: 二、BGFS算法存在的问题 在BFGS算法中。每次都要 ...
特点 相较于: 最优化算法3【拟牛顿法1】 BFGS算法使用秩二矩阵校正hesse矩阵的近似矩阵\(B\),即: \[B_{k+1}=B_k+\alpha\mu_k\mu_k^T+\beta\nu_k\nu_k^T \] 算法分析 将函数在\(x_{k+1}\)处二阶展开 ...
一、牛顿法 对于优化函数\(f(x)\),在\(x_0\)处泰勒展开, \[f(x)=f(x_0)+f^{'}(x_0)(x-x_0)+o(\Delta x) \] 去其线性部分,忽略高阶无穷小,令\(f(x) = 0\)得: \[x=x_0-\frac{f(x_0)}{f ...
python信用评分卡建模(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&ut ...
python实现bgd,sgd,mini-bgd,newton,bfgs,lbfgs优化算法 数据样本三列特征,一列线性回归目标 ...
简介:最近在看逻辑回归算法,在算法构建模型的过程中需要对参数进行求解,采用的方法有梯度下降法和无约束项优化算法。之前对无约束项优化算法并不是很了解,于是在学习逻辑回归之前,先对无约束项优化算法中经典的算法学习了一下。下面将无约束项优化算法的细节进行描述。为了尊重别人的劳动成果,本文的出处 ...
本文由作者林洋港授权网易云社区发布。 一、 L-BFGS是什么 L-BFGS是解无约束非线性规划问题最常用的方法,具有收敛速度快、内存开销少等优点,在机器学习各类算法中常有它的身影。简单的说,L-BFGS和梯度下降、SGD干的同样的事情,但大多数情况下收敛速度更快,这点在大规模计算中很重要。下图 ...