最近开始看Deep Learning,随手记点,方便以后查看。 主要参考资料是Stanford 教授 Andrew Ng 的 Deep Learning 教程讲义:http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial ...
之前的笔记,算不上是 Deep Learning, 只是为理解Deep Learning 而需要学习的基础知识, 从下面开始,我会把我学习UFDL的笔记写出来 主要是给自己用的,所以其他人不一定看得懂 UFDL链接 :http: deeplearning.stanford.edu wiki index.php UFLDL Tutorial 自编码器 Autoencoders : 概述 自编码器是只 ...
2013-09-15 10:57 0 5457 推荐指数:
最近开始看Deep Learning,随手记点,方便以后查看。 主要参考资料是Stanford 教授 Andrew Ng 的 Deep Learning 教程讲义:http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial ...
前言 论文“Reducing the Dimensionality of Data with Neural Networks”是深度学习鼻祖hinton于2006年发表于《SCIENCE 》的论文,也是这篇论文揭开了深度学习的序幕。 笔记 摘要:高维数据可以通过一个多层神经网络把它编码 ...
自编码器是一种能够通过无监督学习,学到输入数据高效表示的人工神经网络。输入数据的这一高效表示称为编码(codings),其维度一般远小于输入数据,使得自编码器可用于降维(查看第八章)。更重要的是,自编码器可作为强大的特征检测器(feature detectors),应用于深度神经网络的预训练(查看 ...
稀疏自编码器的学习结构: 稀疏自编码器Ⅰ: 神经网络 反向传导算法 梯度检验与高级优化 稀疏自编码器Ⅱ: 自编码算法与稀疏性 可视化自编码器训练结果 Exercise: Sparse Autoencoder 自编码算法与稀疏性 已经讨论了神经网络在有 ...
部分内容来自:http://ufldl.stanford.edu/wiki/index.php/%E6%A0%88%E5%BC%8F%E8%87%AA%E7%BC%96%E7%A0%81%E7%AE%97%E6%B3%95 栈式自编码神经网络是一个由多层稀疏自编码器组成的神经网络,其前一层自编码器 ...
黄文坚的tensorflow实战一书中的第四章,讲述了tensorflow实现多层感知机。Hiton早年提出过自编码器的非监督学习算法,书中的代码给出了一个隐藏层的神经网络,本人扩展到了多层,改进了代码。实现多层神经网络时,把每层封装成一个NetLayer对象(本质是单向链表),然后计算隐藏层输出 ...
稀疏自编码器的学习结构: 稀疏自编码器Ⅰ: 神经网络 反向传导算法 梯度检验与高级优化 稀疏自编码器Ⅱ: 自编码算法与稀疏性 可视化自编码器训练结果 Exercise: Sparse Autoencoder 稀疏自编码器Ⅰ这部分先简单讲述神经网络的部分,它和稀疏 ...
基于图嵌入的高斯混合变分自编码器的深度聚类 Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedding, DGG 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com ...