梯度下降(GD)是最小化风险函数、损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写的不对,希望网友纠正。 下面的h(x)是要拟合的函数,J(theta)损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终 ...
Mahout学习算法训练模型 mahout提供了许多分类算法,但许多被设计来处理非常大的数据集,因此可能会有点麻烦。另一方面,有些很容易上手,因为,虽然依然可扩展性,它们具有低开销小的数据集。这样一个低开销的方法是随机梯度下降 SGD 算法,Logistic回归。该算法是一个连续的 非平行 的算法,但它的速度快,因为在概念图中图 . 所示。最重要的处理大型数据,SGD算法采用恒定的内存量不管输入 ...
2013-09-03 15:29 0 13593 推荐指数:
梯度下降(GD)是最小化风险函数、损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写的不对,希望网友纠正。 下面的h(x)是要拟合的函数,J(theta)损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终 ...
最近掉进了Machine Learning的坑里,暑期听完了龙星计划的机器学习课程,走马观花看了一些书。最近找了Stanford的Machine Learning的公开课(http://v.163.com/special/opencourse/machinelearning.html),想 ...
机器学习(1)之梯度下降(gradient descent) 题记:最近零碎的时间都在学习Andrew Ng的machine learning,因此就有了这些笔记。 梯度下降是线性回归的一种(Linear Regression),首先给出一个关于房屋的经典例子 ...
一、从Multinomial Logistic模型说起 1、Multinomial Logistic 令为维输入向量; 为输出label;( ...
智能实时应用为所有行业带来了革命性变化。机器学习及其分支深度学习正蓬勃发展,因为机器学习让计算机能够在无人指引的情况下挖掘深藏的洞见。这种能力正是多种领域所需要的,如非结构化数据分析、图像识别、语音识别和智能决策,这完全不同于传统的编程方式(如 Java、.NET 或 Python ...
本博客是针对Andrew Ng在Coursera上的machine learning课程的学习笔记。 目录 在大数据集上进行学习(Learning with Large Data Sets) 随机梯度下降(Stochastic Gradient Descent ...
引子 转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/46676515 又是好久没写博客,记得有一次看Ng大神的訪谈 ...
随着大数据时代到来,尽管计算机硬件条件的改善,对于机器学习算法效率的要求并不会降低,而机器学习算法效率更多 ...