KL距离,是Kullback-Leibler差异(Kullback-Leibler Divergence)的简称,也叫做相对熵(Relative Entropy)。它衡量的是相同事件空间里的两个概率分布的差异情况。其物理意义是:在相同事件空间里,概率分布P(x)对应的每个事件,若用概率分布 Q(x ...
KL距离,是Kullback-Leibler差异(Kullback-Leibler Divergence)的简称,也叫做相对熵(Relative Entropy)。它衡量的是相同事件空间里的两个概率分布的差异情况。其物理意义是:在相同事件空间里,概率分布P(x)对应的每个事件,若用概率分布 Q(x ...
损失函数 在逻辑回归建立过程中,我们需要一个关于模型参数的可导函数,并且它能够以某种方式衡量模型的效果。这种函数称为损失函数(loss function)。 损失函数越小,则模型的预测效果越优。所以我们可以把训练模型问题转化为最小化损失函数的问题。 损失函数有多种,此次介绍分类问题最常 ...
信息熵、交叉熵、KL散度、JS散度、Wasserstein距离 交叉熵(cross entropy)是深度学习中常用的一个概念,一般用来求目标与预测值之间的差距。以前做一些分类问题的时候,没有过多的注意,直接调用现成的库,用起来也比较方便。最近开始研究起对抗生成网络(GANs),用到了交叉熵 ...
1、可以将token存储在 localstorage里面,在一个统一的地方复写请求头,让每次请求都在header中带上这个token, 当token失效的时候,后端肯定会返回401,这个时候在你可以在 ...
目录 香农信息量、信息熵、交叉熵 KL散度(Kullback–Leibler divergence) JS散度(Jensen-Shannon divergence ) Wasserstein距离 几种距离对比 GAN相关应用 一、香农信息量、信息熵、交叉熵 香农 ...
基本路由 基本路由就是和http.Handle和http.HandleFunc一样都是绑定固定的路径,比如绑定了4个路由映射: 定义的4个控制器中,匹配哪一个路由,就输出对应的控制名。 ...
之前说过Kullback-Leibler,KL距离是Kullback-Leibler差异(Kullback-Leibler Divergence)的简称,也叫做相对熵(Relative Entropy),今天首先用java简单的实现了两段文字的KL距离。java代码 ...
参考:https://blog.csdn.net/b1055077005/article/details/100152102 (文中所有公式均来自该bolg,侵删) 信息奠基人香农(Shannon) ...