@(hadoop)[Spark, MLlib, 数据挖掘, 关联规则, 算法] 目录 〇、简介 一、Apriori算法 二、MLlib实现 Ⅰ、获取购买历史数据 1、产生源数据 2、构造JavaRDD ...
上一篇介绍了关联规则挖掘的一些基本概念和经典的Apriori算法,Aprori算法利用频繁集的两个特性,过滤了很多无关的集合,效率提高不少,但是我们发现Apriori算法是一个候选消除算法,每一次消除都需要扫描一次所有数据记录,造成整个算法在面临大数据集时显得无能为力。今天我们介绍一个新的算法挖掘频繁项集,效率比Aprori算法高很多。 FpGrowth算法通过构造一个树结构来压缩数据记录,使得 ...
2013-08-06 10:39 22 11943 推荐指数:
@(hadoop)[Spark, MLlib, 数据挖掘, 关联规则, 算法] 目录 〇、简介 一、Apriori算法 二、MLlib实现 Ⅰ、获取购买历史数据 1、产生源数据 2、构造JavaRDD ...
在数据挖掘的知识模式中,关联规则模式是比较重要的一种。关联规则的概念由Agrawal、Imielinski、Swami 提出,是数据中一种简单但很实用的规则。关联规则模式属于描述型模式,发现关联规则的算法属于无监督学习的方法。 一、关联规则的定义和属性 考察一些涉及许多物品的事务:事务 ...
我计划整理数据挖掘的基本概念和算法,包括关联规则挖掘、分类、聚类的常用算法,敬请期待。今天讲的是关联规则挖掘的最基本的知识。 关联规则挖掘在电商、零售、大气物理、生物医学已经有了广泛的应用,本篇文章将介绍一些基本知识和Aprori算法。 啤酒与尿布的故事已经成为了关联规则挖掘的经典案例 ...
数据挖掘算法-Apriori Algorithm(关联规则) Apriori algorithm是关联规则里一项基本算法。是由Rakesh Agrawal和Ramakrishnan Srikant两位博士在1994年提出的关联规则挖掘算法。关联规则的目的就是在一个数据集中找出项与项 ...
前面我们讨论的关联规则都是用支持度和自信度来评价的,如果一个规则的自信度高,我们就说它是一条强规则,但是自信度和支持度有时候并不能度量规则的实际意义和业务关注的兴趣点。 一个误导我们的强规则 看这样一个例子,我们分析一个购物篮数据中购买游戏光碟和购买影片光碟之间的关联关系 ...
Aprori算法利用频繁集的两个特性,过滤了很多无关的集合,效率提高不少,但是我们发现Apriori算法是一个候选消除算法,每一次消除都需要扫描一次所有数据记录,造成整个算法在面临大数据集时显得无能为力。今天我们介绍一个新的算法挖掘频繁项集,效率比Aprori算法高很多。 FpGrowth ...
前面几篇介绍了关联规则的一些基本概念和两个基本算法,但实际在商业应用中,写算法反而比较少,理解数据,把握数据,利用工具才是重要的,前面的基础篇是对算法的理解,这篇将介绍开源利用数据挖掘工具weka进行管理规则挖掘。 weka数据集格式arff arff标准数据集简介 weka ...
浅谈数据挖掘中的关联规则挖掘 数据挖掘是指以某种方式分析数据源,从中发现一些潜在的有用的信息,所以数据挖掘又称作知识发现,而关联规则挖掘则是数据挖掘中的一个很重要的课题,顾名思义,它是从数据背后发现事物之间可能存在的关联或者联系。举个最简单的例子 ...