计算每个结点的局部聚类系数 对于节点vi,找出其直接邻居结点集合Ni,计算Ni构成的图中的边数K,除以Ni集合可能的边数|Ni|*(|Ni|-1)/2(无向图)或|Ni|*(|Ni|-1)(有向图) 代码下载地址:https://github.com/caotingting123 ...
转自http: blog.csdn.net pennyliang article details Clustering coefficient的定义有两种 全局的和局部的。 全局的算法基于triplet。triplet分为开放的triplet open triplet 和封闭的triplet closed triplet 两种 A triplet is three nodes that are c ...
2013-06-18 09:26 0 19283 推荐指数:
计算每个结点的局部聚类系数 对于节点vi,找出其直接邻居结点集合Ni,计算Ni构成的图中的边数K,除以Ni集合可能的边数|Ni|*(|Ni|-1)/2(无向图)或|Ni|*(|Ni|-1)(有向图) 代码下载地址:https://github.com/caotingting123 ...
文章目录0 皮尔逊系数1 python计算方法1.1 根据公式手写1.2 numpy的函数1.3 scipy.stats中的函数0 皮尔逊系数 在统计学中,皮尔逊相关系数( Pearson correlation coefficient),又称皮尔逊积矩相关系数(Pearson ...
利用PYTHON计算偏相关系数(Partial correlation coefficient) 在统计学中,我们经常使用皮尔逊相关系数来衡量两个变量之间的线性关系。然而,有时我们感兴趣的是理解两个变量之间的关系,同时控制第三个变量。 例如,假设我们想要测量学生学习的小时数和他们获得的期末考试 ...
文本聚类(Text clustering)文档聚类主要是依据著名的聚类假设:同类的文档相似度较大,而不同类的文档相似度较小。 作为一种无监督的机器学习方法,聚类由于不需要训练过程,以及不需要预先对文档手工标注类别,因此具有一定的灵活性和较高的自动化处理能力,已经成为对文本信息进行有效地组织、摘要 ...
以使用聚类算法将具有较大依赖关系( 冗余度高) 的特征聚集到一起。 特征聚类 ,其基本思想是根据特征与特征之间相关性及特征与特征簇之间的相关性将特征集划分成多个簇群。 ...
-------------------------------- 不管是GMM,还是k-means,都面临一个问题,就是k的个数如何选取?比如在bag-of-words模型中,用k-means训练码书,那么应该选取多少个码字呢?为了不在这个参数的选取上花费太多时间,可以考虑层次聚类 ...
1. 谱聚类 给你博客园上若干个博客,让你将它们分成K类,你会怎样做?想必有很多方法,本文要介绍的是其中的一种——谱聚类。 聚类的直观解释是根据样本间相似度,将它们分成不同组。谱聚类的思想是将样本看作顶点,样本间的相似度看作带权的边,从而将聚类问题转为图分割问题:找到一种图 ...
Dice系数和mIoU是语义分割的评价指标,在这里进行了简单知识介绍。讲到了Dice顺便在最后提一下Dice Loss,以后有时间区分一下在语义分割中两个常用的损失函数,交叉熵和Dice Loss。 一、Dice系数 1.概念理解 Dice系数是一种集合相似度度量函数,通常用于计算两个样本 ...