Storm是一个分布式的、高容错的实时计算系统。Storm适用的场景: Storm可以用来用来处理源源不断的消息,并将处理之后的结果保存到持久化介质中。 由于Storm的处理组件都是分布式的,而且处理延迟都极低,所以可以Storm可以做为一个通用的分布式RPC框架来使用。(实时计算 ...
Storm作为一个开源的分布式实时流计算框架,其内部实现使用了一些常用的技术,这里是对这些技术及其在Storm中作用的概括介绍。以此为基础,后续再深入了解Storm的内部实现细节。 . Zookeeper集群Zookeeper是一个针对大型分布式系统的可靠协调服务系统,其采用类似Unix文件系统树形层次结构的数据模型 如: zoo a, zoo b ,节点内可存储少量数据 lt M,当节点存储大数 ...
2013-05-29 08:59 0 3200 推荐指数:
Storm是一个分布式的、高容错的实时计算系统。Storm适用的场景: Storm可以用来用来处理源源不断的消息,并将处理之后的结果保存到持久化介质中。 由于Storm的处理组件都是分布式的,而且处理延迟都极低,所以可以Storm可以做为一个通用的分布式RPC框架来使用。(实时计算 ...
摘要: 在Hadoop生态圈中,针对大数据进行批量计算时,通常需要一个或者多个MapReduce作业来完成,但这种批量计算方式是满足不了对实时性要求高的场景。那Storm是怎么做到的呢? 博主福利 给大家赠送一套hadoop视频课程 授课老师是百度 hadoop 核心架构师 ...
转自:http://www.dataguru.cn/thread-341168-1-1.html 流式实时分布式计算系统在互联网公司占有举足轻重的地位,尤其在在线和近线的海量数据处理上。而处理这些海量数据的,就是实时流式计算系统。Spark是实时计算的系统,支持流式计算,批处理和实时查询 ...
最近利用闲暇时间,又重新研读了一下Storm。认真对比了一下Hadoop,前者更擅长的是,实时流式数据处理,后者更擅长的是基于HDFS,通过MapReduce方式的离线数据分析计算。对于Hadoop,本身不擅长实时的数据分析处理。两者的共同点都是分布式的架构,而且,都类似有主/从关系的概念 ...
流计算概述什么是流数据:数据有静态数据和流数据。 静态数据: 很多企业为了支持决策分析而构建的数据仓库系统,其中存放的大量历史数据就是静态数据。技术人员可以利用数据挖掘和OLAP(On-Line Analytical Processing)分析工具从静态数据中找到对企业有价值的信息 ...
产生的背景 1)MapReduce有较大的局限性 仅支持Map、Reduce两种语义操作 执行效率低,时间开销大 主要用于大规模离线批处理 不适合迭代计算、交互式计算、实时流处理等场景 2)计算框架种类多,选型难,学习成本高 批处理:MapReduce 流处理:Storm、Flink 交互式计算 ...
MapReduce 简介 概念 面向批处理的分布式计算框架 一种编程模型: MapReduce程序被分为Map(映射)和Reduce(化简)阶段 核心思想 分而治之, 并行计算 移动计算而非移动数据 特点 MapReduce有几个特点: 移动计算 ...
,比如Hadoop,storm,Spark等才是分布式计算框架,随后又查看了一篇博客,写得不错,如下: 以下是转载内 ...