动态时间规整DTW 在日常的生活中我们最经常使用的距离毫无疑问应该是欧式距离,但是对于一些特殊情况,欧氏距离存在着其很明显的缺陷,比如说时间序列,举个比较简单的例子,序列A:1,1,1,10,2,3,序列B:1,1,1,2,10,3,如果用欧氏距离,也就 ...
本文地址为:http: www.cnblogs.com kemaswill ,作者联系方式为kemaswill .com,转载请注明出处。 DTW是一种衡量两个时间序列之间的相似度的方法,主要应用在语音识别领域来识别两段语音是否表示同一个单词。 . DTW方法原理 在时间序列中,需要比较相似性的两段时间序列的长度可能并不相等,在语音识别领域表现为不同人的语速不同。而且同一个单词内的不同音素的发音 ...
2013-04-18 15:30 1 14997 推荐指数:
动态时间规整DTW 在日常的生活中我们最经常使用的距离毫无疑问应该是欧式距离,但是对于一些特殊情况,欧氏距离存在着其很明显的缺陷,比如说时间序列,举个比较简单的例子,序列A:1,1,1,10,2,3,序列B:1,1,1,2,10,3,如果用欧氏距离,也就 ...
对某个时间序列在时间轴进行了某种扭曲(Warping), 达到一定程度的对齐再计算相似度。 DTW可以计 ...
转自:http://www.cnblogs.com/luxiaoxun/archive/2013/05/09/3069036.html Dynamic Time Warping(DTW)是一种衡量两个时间序列之间的相似度的方法,主要应用在语音识别领域来识别两段语音是否表示同一个 ...
Dynamic Time Warping(DTW)是一种衡量两个时间序列之间的相似度的方法,主要应用在语音识别领域来识别两段语音是否表示同一个单词。 1. DTW方法原理 在时间序列中,需要比较相似性的两段时间序列的长度可能并不相等,在语音识别领域表现为不同人的语速不同。而且同一个单词 ...
记录备用 Install Example >>> import numpy as np >>> from scip ...
本文地址为:http://www.cnblogs.com/kemaswill/,作者联系方式为kemaswill@163.com,转载请注明出处。 关于DTW算法的简介请见我的上一篇博客:时间序列挖掘-动态时间归整算法原理和实现。 DTW采用动态规划来计算两个时间序列之间的相似性 ...
动态时间规整DTW 1 概述 动态时间规整是一个计算时间序列之间距离的算法,是为了解决语音识别领域中语速不同的情况下如何计算距离相似度的问题。 相对于用经典的欧式距离来计算相似度而言,DTW在数据点个数不对齐的情况下微调时间从而能够计算距离。 DTW之所以能够计算数据点个数不同时间序列之间 ...
Warping,即动态时间归整。DTW算法基于DP动态规划思想,解决了发音长短不一的模板匹配问题,常用于语 ...