原文:Deep learning:二十四(stacked autoencoder练习)

前言: 本次是练习 个隐含层的网络的训练方法,每个网络层都是用的sparse autoencoder思想,利用两个隐含层的网络来提取出输入数据的特征。本次实验验要完成的任务是对MINST进行手写数字识别,实验内容及步骤参考网页教程Exercise: Implement deep networks for digit classification。当提取出手写数字图片的特征后,就用softmax进 ...

2013-04-09 22:05 77 30073 推荐指数:

查看详情

Deep learning:九(Sparse Autoencoder练习)

  前言:   现在来进入sparse autoencoder的一个实例练习,参考Ng的网页教程:Exercise:Sparse Autoencoder。这个例子所要实现的内容大概如下:从给定的很多张自然图片中截取出大小为8*8的小patches图片共10000张,现在需要用sparse ...

Wed Mar 20 18:58:00 CST 2013 103 51508
Deep learning:八(Sparse Autoencoder)

  前言:   这节课来学习下Deep learning领域比较出名的一类算法——sparse autoencoder,即稀疏模式的自动编码。我们知道,deep learning也叫做unsupervised learning,所以这里的sparse autoencoder也应是无监督 ...

Wed Mar 20 06:01:00 CST 2013 13 44142
Deep learning二十九(Sparse coding练习)

  前言   本节主要是练习下斯坦福DL网络教程UFLDL关于Sparse coding那一部分,具体的网页教程参考:Exercise:Sparse Coding。该实验的主要内容是从2w个自然图像的patches中分别采用sparse coding和拓扑的sparse coding方法 ...

Wed Apr 17 00:41:00 CST 2013 66 18947
Deep learning二十二(linear decoder练习)

  前言:   本节是练习Linear decoder的应用,关于Linear decoder的相关知识介绍请参考:Deep learning:十七(Linear Decoders,Convolution和Pooling),实验步骤参考Exercise: Implement deep ...

Mon Apr 08 22:34:00 CST 2013 29 11316
Deep learning:三十八(Stacked CNN简单介绍)

  前言:   本节主要是来简单介绍下stacked CNN(深度卷积网络),起源于本人在构建SAE网络时的一点困惑:见Deep learning:三十六(关于构建深度卷积SAE网络的一点困惑)。因为有时候针对大图片进行recognition时,需要用到无监督学习的方法 ...

Mon May 06 04:27:00 CST 2013 53 76039
Deep learning:四(logistic regression练习)

  前言:   本节来练习下logistic regression相关内容,参考的资料为网页:http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc ...

Sun Mar 17 05:59:00 CST 2013 12 29183
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM