前言 本文是多元线性回归的练习,这里练习的是最简单的二元线性回归,参考斯坦福大学的教学网http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc ...
前言: 本节来练习下logistic regression相关内容,参考的资料为网页:http: openclassroom.stanford.edu MainFolder DocumentPage.php course DeepLearning amp doc exercises ex ex .html。这里给出的训练样本的特征为 个学生的两门功课的分数,样本值为对应的同学是否允许被上大学,如 ...
2013-03-16 21:59 12 29183 推荐指数:
前言 本文是多元线性回归的练习,这里练习的是最简单的二元线性回归,参考斯坦福大学的教学网http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc ...
/ex3/ex3.html.其实在上一篇博文Deep learning:二(linear regres ...
前言: 这篇文章主要是用来练习softmax regression在多分类器中的应用,关于该部分的理论知识已经在前面的博文中Deep learning:十三(Softmax Regression)有所介绍。本次的实验内容是参考网页:http ...
前言: 在上一讲Deep learning:五(regularized线性回归练习)中已经介绍了regularization项在线性回归问题中的应用,这节主要是练习regularization项在logistic回归中的应用,并使用牛顿法来求解模型的参数。参考的网页资料为:http ...
Logistic Regression with a Neural Network mindset Welcome to the first (required) programming exercise of the deep learning specialization. ...
在前面的logistic regression博文Deep learning:四(logistic regression练习) 中,我们知道logistic regression很适合做一些非线性方面的分类问题,不过它只适合处理二分类的问题,且在给出分类结果时还会给出结果的概率 ...
讲义中的第四章,讲的是Softmax 回归。softmax回归是logistic回归的泛化版,先来回顾下logistic回归。 logistic回归: 训练集为{(x(1),y(1)),...,(x(m),y(m))},其中m为样本数,x(i)为特征。 logistic回归是针对二分类问题 ...
前言: 现在来进入sparse autoencoder的一个实例练习,参考Ng的网页教程:Exercise:Sparse Autoencoder。这个例子所要实现的内容大概如下:从给定的很多张自然图片中截取出大小为8*8的小patches图片共10000张,现在需要用sparse ...