原文:最大后验估计(Maximum-a-Posteriori (MAP) Estimation) 【转】

最大后验估计是根据经验数据获得对难以观察的量的点估计。与最大似然估计类似,但是最大的不同时,最大后验估计的融入了要估计量的先验分布在其中。故最大后验估计可以看做规则化的最大似然估计。 首先,我们回顾上篇文章中的最大似然估计,假设x为独立同分布的采样, 为模型参数,f为我们所使用的模型。那么最大似然估计可以表示为: 现在,假设 的先验分布为g。通过贝叶斯理论,对于 的后验分布如下式所示: 最后验分布 ...

2012-11-08 16:48 0 12341 推荐指数:

查看详情

最大似然估计最大估计

本文主要介绍三类参数估计方法-最大似然估计MLE、最大概率估计MAP及贝叶斯估计。 个人认为:三个参数估计的方法可以总结为如下: 我们知道贝叶斯公式是这样写的: 然后就可以通过这个公式来求解最大似然估计MLE、最大估计MAP和贝叶斯估计了。 最大似然估计:实际上是求了红线 ...

Sat Jul 08 23:02:00 CST 2017 0 5486
最大似然估计 (MLE) 最大概率(MAP

1) 最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”。例如,我们知道这个分布是正态分布,但是不知道均值和方差;或者是二项分布,但是不知道均值。 最大似然估计(MLE,Maximum Likelihood ...

Sat Dec 19 03:42:00 CST 2015 11 77174
最大似然估计(MLE)和最大概率(MAP

最大似然估计最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。简单而言,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差未知。我们没有人力与物力去统计全国每个人的身高,但是可以通过采样,获取部分人的身高,然后通过最大似 ...

Sat Jul 11 04:37:00 CST 2015 0 2598
贝叶斯公式与最大估计(MAP)

1, 频率派思想 频率派思想认为概率乃事情发生的频率,概率是一固定常量,是固定不变的 2, 最大似然估计 假设有100个水果由苹果和梨混在一起,具体分配比例未知,于是你去随机抽取10次,抽到苹果标记为1, 抽到梨标记为0,每次标记之后将抽到的水果放回 最终统计的结果如下: 苹果 8次,梨 ...

Mon Jun 18 19:52:00 CST 2018 4 2238
极大似然估计(MLE)与极大估计MAP

极大似然估计(MLE)和极大估计MAP)分别是频率学派和贝叶斯学派(统计学者分为两大学派,频率学派认为参数是非随机的,而贝叶斯学派认为参数也是随机变量)的参数估计方法,下面我们以线性回归分析为例,分别简要介绍MLE和MAP,两者的关系以及分别与最小二乘回归、正则化最小二乘回归分析的关系 ...

Thu Feb 27 02:25:00 CST 2020 0 797
最大似然估计最大概率

参考链接1 参考链接2 一、介绍   极大似然估计和贝叶斯估计分别代表了频率派和贝叶斯派的观点。频率派认为,参数是客观存在的,只是未知而矣。因此,频率派最关心极大似然函数,只要参数求出来了,给定自变量X,Y也就固定了,极大似然估计如下所示:   D表示训练数据集,是模型参数   相反 ...

Wed Jun 10 06:54:00 CST 2020 0 649
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM