数据的导入 > data=read.csv('F:/R语言工作空间/pca/data.csv') #数据的导入> > ls(data) #ls()函数列出所有变量 [1] "X" "不良贷款率" "存贷款比率" "存款增长率" "贷款增长率" "流动比率" "收入利润率 ...
学生身体 项指标的主成份分析 excel数据 学生序号 x 身高 x 体重 x 胸围 x 坐高 复制数据到剪切板 数据读入R软件 gt d read.table clipboard ,header T gt d x 身高 x 体重 x 胸围 x 坐高 原始数据标准化 gt sd scale d 标准化数据展示 复制到剪切板 gt sd x 身高 x 体重 x 胸围 x 坐高 , . . . . , ...
2012-06-18 17:08 0 11086 推荐指数:
数据的导入 > data=read.csv('F:/R语言工作空间/pca/data.csv') #数据的导入> > ls(data) #ls()函数列出所有变量 [1] "X" "不良贷款率" "存贷款比率" "存款增长率" "贷款增长率" "流动比率" "收入利润率 ...
1、关键点 综述:主成分分析 因子分析 典型相关分析,三种方法的共同点主要是用来对数据降维处理的从数据中提取某些公共部分,然后对这些公共部分进行分析和处理。 #主成分分析 是将多指标化为少数几个综合指标的一种统计分析方法 主成分分析是一种通过降维技术把多个变量化成少数几个主成分的方法,这些主 ...
https://www.cnblogs.com/jin-liang/p/9064020.html 数据的导入 > data=read.csv('F:/R语言工作空间/pca/data.csv') #数据的导入 > > ls(data) #ls()函数列出所有变量 ...
作者:落痕的寒假原文:https://blog.csdn.net/LuohenYJ/article/details/97950522 声明:本文章经原作者同意后授权转载。 主成分分析 Principal Component Methods(PCA)允许 ...
如果你的职业定位是数据分析师/计算生物学家,那么不懂PCA、t-SNE的原理就说不过去了吧。跑通软件没什么了不起的,网上那么多教程,copy一下就会。关键是要懂其数学原理,理解算法的假设,适合解决什么样的问题。 学习可以高效,但却没有捷径,你终将为自己的思维懒惰和行为懒惰买单。 PCA ...
原文链接:http://tecdat.cn/?p=6592 维度降低有两个主要用例:数据探索和机器学习。它对于数据探索很有用,因为维数减少到几个维度(例如2或3维)允许可视化样本。然后可以使用 ...
一, R语言所处理的工作层: 解释一下: 最下面的一层为数据源,往上是数据仓库层,往上是数据探索层,包括统计分析,统计查询,还有就是报告 再往上的三层,分别是数据挖掘,数据展现和数据决策。 由上图可知,R语言是可以用 ...
主成分分析(principal component analysis,PCA)是一种降维技术,把多个变量化为能够反映原始变量大部分信息的少数几个主成分。设X有p个变量,为n*p阶矩阵,即n个样本的p维向量。首先对X的p个变量寻找正规化线性组合,使它的方差达到最大,这个新的变量称为第一主成分,抽取 ...