网络最大流是指在一个网络流图中可以从源点流到汇点的最大的流量。求解网络最大流的常用算法可以分为增广路径算法和预推进算法。其中,预推进算法的理论复杂度优于增广路径算法,但是编码复杂度过高,且效率优势在很多时候并不是很明显,因此,经常使用的算法为增广路径算法。 增广路径算法主要有 ...
通过 USACO . . Ditch 学习一下最大流算法 。可惜它给的测试数据几乎没有任何杀伤力,后面测试时我们采用 DD engi 写的程序生成的加强版数据。 总体上来说,最大流算法分为两大类:增广路 Augmenting Path 和预流推进重标号 Push Relabel 。也有算法同时借鉴了两者的长处,如 Improved SAP 。本篇主要介绍增广路类算法,思想 复杂度及实际运行效率比较 ...
2012-05-20 19:49 3 10012 推荐指数:
网络最大流是指在一个网络流图中可以从源点流到汇点的最大的流量。求解网络最大流的常用算法可以分为增广路径算法和预推进算法。其中,预推进算法的理论复杂度优于增广路径算法,但是编码复杂度过高,且效率优势在很多时候并不是很明显,因此,经常使用的算法为增广路径算法。 增广路径算法主要有 ...
题目描述 如题,给出一个网络图,以及其源点和汇点,求出其网络最大流。 输入输出格式 输入格式: 第一行包含四个正整数N、M、S、T,分别表示点的个数、有向边的个数、源点序号、汇点序号。 接下来M行每行包含三个正整数ui、vi、wi,表示第i条有向边从ui出发,到达vi,边权为wi ...
。 介绍 Dinic算法本身,自然是解决最大流(普通最大流,最大流最小割)的算法。通过处理,也可以解 ...
前言 最大流问题是网络优化中典型的问题,用形象的语言来描述就是在满足容量约束的前提下将尽可能多的流从源节点(始点)到汇节点(终点)。解决此问题的经典方法很多,本文介绍广为人熟知的Ford-Fulkerson算法,来解决最大流问题。尽管网上关于此问题的文章多如牛毛,但笔者希望结合自己学习过程中 ...
前置知识 网络最大流入门 前言 Dinic在信息学奥赛中是一种最常用的求网络最大流的算法。 它凭借着思路直观,代码难度小,性能优越等优势,深受广大oier青睐 思想 $Dinic$算法属于增广路算法。 它的核心思想是:对于每一个点,对其所连的边进行增广,在增广的时候,每次增广“极大流 ...
前言 EK算法是求网络最大流的最基础的算法,也是比较好理解的一种算法,利用它可以解决绝大多数最大流问题。 但是受到时间复杂度的限制,这种算法常常有TLE的风险 思想 还记得我们在介绍最大流的时候提到的求解思路么? 对一张网络流图,每次找出它的最小的残量(能增广的量),对其进行增广 ...
前言 看到网上好多都用的链式前向星,就我在用 \(vector\) …… 定义 先来介绍一些相关的定义。(个人理解) 网络 一个网络是一张带权的有向图 \(G=(V,E)\) ,其中每任意一条边 \((u,v)\) 的权值称为这条边的容量 \(c(u,v)\) 。若这条边不存在,对应 ...
传送门: 网络流(一)基础知识篇 网络流(二)最大流的增广路算法 网络流(三)最大流最小割定理 网络流(四)dinic算法 网络流(五)有上下限的最大流 网络流(六)最小费用最大流问题 转载:https://www.cnblogs.com ...