Linear Discriminant Analysis(线性判别分类器)是对费舍尔的线性鉴别方法(FLD)的归纳,属于监督学习的方法。 LDA的基本思想是将高维的模式样本投影到最佳鉴别矢量空间,以达到抽取分类信息和压缩特征空间维数的效果,投影后保证模式样本在新的子空间有最大的类间距离和最小的类 ...
PS: 很久没做CV的事情了,这是很早以前刚入门时候的一篇,以后再有CV相关工作会发布在新的个人站点:http: my.phirobot.com blog category cv.htmlCV分类下。 posted : from FreedomShe 题记: 年 月 日回到家,南大计算机研究僧复试以后,等待着的就是独坐家中无聊的潇洒。不知哪日,无意中和未来的同学潘潘聊到了图像处理,聊到了她的论文 ...
2012-04-24 20:36 34 25795 推荐指数:
Linear Discriminant Analysis(线性判别分类器)是对费舍尔的线性鉴别方法(FLD)的归纳,属于监督学习的方法。 LDA的基本思想是将高维的模式样本投影到最佳鉴别矢量空间,以达到抽取分类信息和压缩特征空间维数的效果,投影后保证模式样本在新的子空间有最大的类间距离和最小的类 ...
在鸢尾花数据集上 去除线性可分的类(1类),结果如下: 去除线性不可分的类(0类),结果如下: ...
我正在做一个关于SVM的小项目,在我执行验证SVM训练后的模型的时候,得到的report分数总是很高,无论是召回率(查全率)、精准度、还是f1-score都很高: 图1 分类器分数report 但是,对于训练的效果就非常差,差到连包含训练集的测试集都无法正确分类,如下图所示 ...
相关讨论 http://tieba.baidu.com/p/3960350008 基于教程http://deeplearning.net/tutorial/lstm.html LSTM基本 ...
以下内容参考CS231n。 上一篇关于分类器的文章,使用的是KNN分类器,KNN分类有两个主要的缺点: 空间上,需要存储所有的训练数据用于比较。 时间上,每次分类操作,需要和所有训练数据比较。 本文开始线性分类器的学习。 和KNN相比,线性分类器才算得上真正具有实用价值 ...
贝叶斯定理 贝叶斯定理是通过对观测值概率分布的主观判断(即先验概率)进行修正的定理,在概率论中具有重要地位。 先验概率分布(边缘概率)是指基于主观判断而非样本分布的概率分布,后验概率(条件概率)是 ...
贝叶斯定理 贝叶斯定理是通过对观测值概率分布的主观判断(即先验概率)进行修正的定理,在概率论中具有重要地位。 先验概率分布(边缘概率)是指基于主观判断而非样本分布的概率分布,后验概率(条件概率)是 ...
本文代码来之《数据分析与挖掘实战》,在此基础上补充完善了一下~ 代码是基于SVM的分类器Python实现,原文章节题目和code关系不大,或者说给出已处理好数据的方法缺失、源是图像数据更是不见踪影,一句话就是练习分类器(▼㉨▼メ) 源代码直接给好了K=30,就试了试怎么选的,挑选规则设定比较 ...