因为开发了一个新闻推荐系统的模块,在推荐算法这一块涉及到了基于内容的推荐算法(Content-Based Recommendation),于是借此机会,基于自己看了网上各种资料后对该分类方法的理解,用尽量清晰明了的语言,结合算法和自己开发推荐模块本身,记录下这些过程,供自己回顾,也供大家参考 ...
本文链接:http: www.cnblogs.com breezedeus archive .html,转载请注明出处 Collaborative Filtering Recommendations 协同过滤,简称CF 是目前最流行的推荐方法,在研究界和工业界得到大量使用。但是,工业界真正使用的系统一般都不会只有CF推荐算法,Content based Recommendations CB 基本 ...
2012-04-10 14:06 7 56566 推荐指数:
因为开发了一个新闻推荐系统的模块,在推荐算法这一块涉及到了基于内容的推荐算法(Content-Based Recommendation),于是借此机会,基于自己看了网上各种资料后对该分类方法的理解,用尽量清晰明了的语言,结合算法和自己开发推荐模块本身,记录下这些过程,供自己回顾,也供大家参考 ...
Leveraging Post-click Feedback for Content Recommendations Authors: Hongyi Wen, Longqi Yang, Deborah Estrin Recsys'19 Cornell University 论文链接 ...
博客地址:http://www.cnblogs.com/daniel-D/p/5602254.html 新浪微博:http://weibo.com/u/2786597434 欢迎多多交流~ Main Idea 这篇论文的工作是讲 RNN 应用到推荐系统中,想法在于把一个 ...
根据推荐物品的元数据发现物品的相关性,再基于用户过去的喜好记录,为用户推荐相似的物品。 一、特征提取:抽取出来的对结果预测有用的信息 对物品的特征提取-打标签(tag) 用户自定义标签(UGC) 隐语义模型(LFG) 专家标签(PGC) 对文本信息的特征提取-关键词 ...
。 代码 https://github.com/fanqingsong/Content-based- ...
一、摘要 本文提出一种方法,将神经语言模型应用在用户购买时间序列上,将产品嵌入到低维向量空间中。结果,具有相似上下文(即,其周围购买)的产品被映射到嵌入空间中附近的向量。 二、模型: 低维项目向 ...
: 输出2:根据输入2和输出1,从电影数据集中给用户推荐用户没有看过的与用户相似度最高的k个电影。 前 ...