传统的 机器学习 技术分为两类,一类是无监督学习,一类是监督学习。 无监督学习只利用未标记的样本集,而监督学习则只利用标记的样本集进行学习。 但在很多实际问题中,只有少量的带有标记的数据,因为对数据进行标记的代价有时很高,比如在生物学中,对某种蛋白质的结构分析或者功能鉴定 ...
http: blog.sina.com.cn s blog a f xmj .html 在机器学习 Machine learning 领域,监督学习 Supervised learning 非监督学习 Unsupervised learning 以及半监督学习 Semi supervised learning 是三类研究比较多,应用比较广的学习技术,wiki上对这三种学习的简单描述如下: 监督学习 ...
2012-03-28 13:56 2 6130 推荐指数:
传统的 机器学习 技术分为两类,一类是无监督学习,一类是监督学习。 无监督学习只利用未标记的样本集,而监督学习则只利用标记的样本集进行学习。 但在很多实际问题中,只有少量的带有标记的数据,因为对数据进行标记的代价有时很高,比如在生物学中,对某种蛋白质的结构分析或者功能鉴定 ...
第一章 监督学习 1.1 准备工作 如果你是在windows环境下,建议直接使用anaconda,这里里面集成了一些常用的Python库。 如果是在其他环境下,就更方便了,保证这下面几个已经安装就好了。 NumPy: http://docs.scipy.org/doc ...
以下是摘抄自知乎上对监督学习与非监督学习的总结,觉得写得很形象,于是记下: 这个问题可以回答得很简单:是否有监督(supervised),就看输入数据是否有标签(label)。输入数据有标签,则为有监督学习,没标签则为无监督学习首 先看什么是学习(learning)?一个成语就可概括:举一反三 ...
在机器学习中,监督学习和非监督学习算法是非常重要的,但是二者应该如何区分开来呢? 要向对二者进行区分,首先就要对训练的数据进行检查,看一下训练数据中是否有标签,这是二者最根本的区别。监督学习的数据既有特征又有标签,而非监督学习的数据中只有特征而没有标签。 监督学习是通过训练让机器自己找到特征 ...
监督学习:通过人为地输入带有标签的训练数据集,使计算机训练得到一个较为合适的模型,对未知标签的数据进行预测。常见的监督学习算法:回归和分类。 1.回归(Regression):通常有两个及以上变量,数据一般是连续的,通过训练集变量之间的关系得到一条模拟训练样本的曲线,对未知数据的因变量进行预测 ...
在机器学习(Machine learning)领域。主要有三类不同的学习方法: 监督学习(Supervised learning)、 非监督学习(Unsupervised learning)、 半监督学习(Semi-supervised learning), 监督学习 ...
,通过对模型的使用使得机器比以往表现的更好。 从字面意思上看,监督学习和非监督学习:变量 ...
前言 机器学习分为:监督学习,无监督学习,半监督学习(强化学习)等。 在这里,主要理解一下监督学习和无监督学习。 监督学习(supervised learning) 从给定的训练数据集中学习出一个函数(模型参数),当新的数据到来时,可以根据这个函数预测结果。监督学习的训练集要求包括输入输出 ...