MATLAB 中BP神经网络算法的实现 BP神经网络算法提供了一种普遍并且实用的方法从样例中学习值为实数、离散值或者向量的函数,这里就简单介绍一下如何用MATLAB编程实现该算 ...
我用TRAINLM算法训练BP神经网络,训练的过程中在命令窗口中显示类似如下的数据: TRAINLM, Epoch , MSE . e , Gradient . e TRAINLM, Epoch , MSE . e , Gradient . e TRAINLM, Epoch , MSE . e , Gradient . e 其中 TRAINLM表示用的算法是TRAINLM Epoch 表示目标训练 ...
2012-01-06 11:42 0 8308 推荐指数:
MATLAB 中BP神经网络算法的实现 BP神经网络算法提供了一种普遍并且实用的方法从样例中学习值为实数、离散值或者向量的函数,这里就简单介绍一下如何用MATLAB编程实现该算 ...
神经网络训练过程的窗口能不弹出来吗? net.trainParam.showWindow = false; net.trainParam.showCommandLine = false; ------------------------ net.trainParam.show ...
1.1 案例背景 1.1.1 BP神经网络概述 BP神经网络是一种多层前馈神经网络,该网络的主要特点是信号前向传递,误差反向传播。在前向传递中,输入信号从输入层经隐含层逐层处理,直至输出层。每一层的神经元状态只影响下一层神经元状态。如果输出层得不到期望输出,则转入反向传播,根据预测误差调整网络 ...
BP神经网络是包含多个隐含层的网络,具备处理线性不可分问题的能力。 20世纪80年代中期,Rumelhart,McClelland等成立了Parallel Distributed Procession(PDP)小组,提出了著名的误差反向传播算法(Error Back Propagtion ...
本文是学习B站老哥数学建模课程之后的一点笔记。 BP(back propagation)算法神经网络的简单原理 BP神经网络是一种采用BP学习算法(按照误差逆向传播训练)的多层前馈神经网络,是应用最广泛的神经网络。 神经网络基本结构如下: 共分为三层,可以理解为一组输入 ...
1、BP神经网络简介:其可以称为“万能的模型+误差修正函数”,每次根据训练得到的结果和预想结果进行误差分析,进而修改权值和阈值,一步一步得到能输出和预想结果一致的模型。 其是由输入层、隐藏层和输出层组成,对给懂的训练集进行训练,从而能够依据现有变量对需要的值进行预测。 具体过程可以见博客 ...
本文主要内容包括: (1) 介绍神经网络基本原理,(2) AForge.NET实现前向神经网络的方法,(3) Matlab实现前向神经网络的方法 。 第0节、引例 本文以Fisher的Iris数据集作为神经网络程序的测试数据集。Iris数据集可以在http ...
本文主要内容包含: (1) 介绍神经网络基本原理,(2) AForge.NET实现前向神经网络的方法,(3) Matlab实现前向神经网络的方法 。 第0节、引例 本文以Fisher的Iris数据集作为神经网络程序的測试数据集。Iris数据集能够在http ...