混沌分形之逻辑斯蒂(Logistic)映射系统


      前几天,有个同事看到我生成的一幅逻辑斯蒂分岔图像后,问我:“这是咪咪吗?”我回答:“淫者见淫。”好吧,这里将生成几种分岔映射图形,包括逻辑斯蒂映射系统,正弦映射系统和曼德勃罗映射系统。实际上这几种图形算不上分形,只不过它与我写的其他分形对象使用相同的基类,所以也将其列入混沌分形的范畴。

      关于基类FractalEquation的定义及相关软件见:混沌与分形

(1)逻辑斯蒂映射系统

// 逻辑斯蒂映射系统
class LogisticMap : public FractalEquation { public: LogisticMap() { m_StartX = 0.0f; m_StartY = 0.0f; m_StartZ = 0.0f; m_ParamA = 0.0f; m_ParamB = 4.0f; m_nIterateCount = 100; } void IterateValue(float x, float y, float z, float& outX, float& outY, float& outZ) const { float R = (float)rand()/RAND_MAX; float k = m_ParamA + (m_ParamB - m_ParamA) * R; outX = R*4.0f; outY = (float)rand()/RAND_MAX; for (int i = 0; i < m_nIterateCount; i++) { outY = k*outY*(1-outY); } outY *= 2; outZ = z; } bool IsValidParamA() const {return true;} bool IsValidParamB() const {return true;} private: int m_nIterateCount; };

调节下参数后的图形:

(2)正弦映射系统

// 正弦映射系统
class SinMap : public FractalEquation { public: SinMap() { m_StartX = 0.0f; m_StartY = 0.0f; m_StartZ = 0.0f; m_ParamA = -2*PI; m_ParamB = 2*PI; m_nIterateCount = 64; } void IterateValue(float x, float y, float z, float& outX, float& outY, float& outZ) const { float R = (float)rand()/RAND_MAX; float k = m_ParamA + (m_ParamB - m_ParamA) * R; outX = R*4.0f; outY = (float)rand()/RAND_MAX; for (int i = 0; i < m_nIterateCount; i++) { outY = k*sinf(outY); } outY *= 0.5f; outZ = z; } bool IsValidParamA() const {return true;} bool IsValidParamB() const {return true;} private: int m_nIterateCount; };

(3)曼德勃罗映射系统

// 曼德勃罗映射系统
class MandelbrotMap : public FractalEquation { public: MandelbrotMap() { m_StartX = 0.0f; m_StartY = 0.0f; m_StartZ = 0.0f; m_ParamA = -2.0f; m_ParamB = 0.0f; m_nIterateCount = 64; } void IterateValue(float x, float y, float z, float& outX, float& outY, float& outZ) const { float R = (float)rand()/RAND_MAX; float k = m_ParamA + (m_ParamB - m_ParamA) * R; outX = R*4.0f; outY = (float)rand()/RAND_MAX; for (int i = 0; i < m_nIterateCount; i++) { outY = outY*outY + k; } outZ = z; } bool IsValidParamA() const {return true;} bool IsValidParamB() const {return true;} private: int m_nIterateCount; };

最后发下被我同事当成MM的逻辑斯蒂分岔图像:

 之前我还写过一篇关于逻辑斯蒂的文章:混沌数学之logistic模型


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM